The cosmological principle in theories with torsion: the case of Einstein-Cartan-Dirac-Maxwell gravity

被引:10
|
作者
Cabral, Francisco [1 ]
Lobo, Francisco S. N. [1 ]
Rubiera-Garcia, Diego [2 ,3 ]
机构
[1] Univ Lisbon, Inst Astrofis & Ciencias Espaco, Fac Ciencias, Edificio C8, P-1749016 Lisbon, Portugal
[2] Univ Complutense Madrid, Dept Fis Teor, E-28040 Madrid, Spain
[3] Univ Complutense Madrid, IPARCOS, E-28040 Madrid, Spain
关键词
modified gravity; physics of the early universe;
D O I
10.1088/1475-7516/2020/10/057
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We address the implementation of the cosmological principle, that is, the assumption of homogeneity and isotropy in the spatial distribution of matter in the Universe, within the context of Einstein-Cartan theory including minimal couplings of both Dirac and Maxwell fields to torsion. This theory gives rise to new physical effects in environments of high spin densities while leaving the vacuum dynamics unaffected. Our approach is to impose the cosmological principle from the onset to the geometrical degrees of freedom (metric and torsion functions), which constrains the torsion components and the corresponding correction terms in the Friedmann-like equations and in the resulting fermionic and bosonic (non-linear) dynamics. We derive the corresponding cosmological dynamics for the geometrical and matter degrees of freedom and discuss the validity of this approach.
引用
收藏
页数:19
相关论文
共 35 条
  • [1] Cosmological bounces, cyclic universes, and effective cosmological constant in Einstein-Cartan-Dirac-Maxwell theory
    Cabral, Francisco
    Lobo, Francisco S. N.
    Rubiera-Garcia, Diego
    PHYSICAL REVIEW D, 2020, 102 (08)
  • [2] EFFECTIVE EQUIVALENCE OF EINSTEIN-CARTAN AND EINSTEIN THEORIES OF GRAVITY
    NESTER, JM
    PHYSICAL REVIEW D, 1977, 16 (08): : 2395 - 2401
  • [3] EINSTEIN-CARTAN GRAVITY WITH TORSION FIELD SERVING AS AN ORIGIN FOR THE COSMOLOGICAL CONSTANT OR DARK ENERGY DENSITY
    Ivanov, A. N.
    Wellenzohn, M.
    ASTROPHYSICAL JOURNAL, 2016, 829 (01):
  • [4] Two-spinors and Einstein-Cartan-Maxwell-Dirac fields
    Canarutto, D
    Jadczyk, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (01): : 49 - 67
  • [6] Einstein–Cartan–Dirac gravity with U(1) symmetry breaking
    Francisco Cabral
    Francisco S. N. Lobo
    Diego Rubiera-Garcia
    The European Physical Journal C, 2019, 79
  • [7] Einstein-Cartan-Heisenberg theory of gravity with dynamical torsion
    Dzhunushaliev, V.
    Singleton, D.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257 (1-2): : 7 - 13
  • [8] Einstein-Cartan-Heisenberg theory of gravity with dynamical torsion
    Dzhunushaliev, V
    Singleton, D
    PHYSICS LETTERS A, 1999, 257 (1-2) : 7 - 13
  • [9] Cosmological consequences of two sources of torsion in the Einstein-Cartan theory
    Galiakhmetov A.M.
    Russian Physics Journal, 2001, 44 (12) : 1316 - 1322
  • [10] Schwinger's variational principle in Einstein-Cartan gravity
    Poplawski, Nikodem
    PHYSICAL REVIEW D, 2014, 89 (02):