Genetic algorithms for parameter estimation in modelling of index returns

被引:1
|
作者
Franco, Manuel [1 ]
Vivo, Juana-Maria [1 ]
机构
[1] Univ Murcia, Dept Stat & Res Operat, Campus Mare Nostrum, Murcia, Spain
来源
EUROPEAN JOURNAL OF FINANCE | 2018年 / 24卷 / 13期
关键词
financial market index; SMI returns; genetic algorithms; distribution models; goodness-of-fit; BEHAVIOR;
D O I
10.1080/1351847X.2017.1392332
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The main aim for this paper is motivated by the usefulness of genetic algorithms (GAs) for the fitting of distribution models to financial market data. In detail, we use a GA along with the least squares method in order to achieve a more relatively accurate and robust approach for optimizing non-linear objective functions. The combination of these two methods is applied for fitting parametric distributions to a dataset of market index returns, improving the methodology of cumulative returns prediction. The process of extrapolation plays a fundamental role in this area of analysis, being essential to empirically fit a convenient distribution that describes the available data as closely as possible. For comparison and illustrative purpose, we analyse distribution models used in the financial literature for modelling such dataset, and then the practical application is carried out again on a more updated dataset from the same financial index. In addition, a brief simulation study is developed to illustrate the usefulness of the proposal procedure.
引用
收藏
页码:1088 / 1099
页数:12
相关论文
共 50 条
  • [1] A Novel Technique for ARMA Modelling with Order and Parameter Estimation Using Genetic Algorithms
    Abo-Hammour, Zaer. S.
    Alsmadi, Othman M. K.
    Al-Smadi, Adnan M.
    NETWORKED DIGITAL TECHNOLOGIES, PT 2, 2010, 88 : 564 - +
  • [2] Cosmological Parameter Estimation with Genetic Algorithms
    Medel-Esquivel, Ricardo
    Gomez-Vargas, Isidro
    Morales Sanchez, Alejandro A.
    Garcia-Salcedo, Ricardo
    Alberto Vazquez, Jose
    UNIVERSE, 2024, 10 (01)
  • [3] Comparison of parameter estimation algorithms in hydrological modelling
    Blasone, R. S.
    Madsen, H.
    Rosbjerg, D.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELLING: FROM UNCERTAINTY TO DECISION MAKING, 2006, 304 : 67 - +
  • [4] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, LJ
    Park, CH
    Park, C
    Lee, T
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1997, 35 (01) : 47 - 49
  • [5] Aerodynamic parameter estimation using genetic algorithms
    Shi, Yang
    Qian, Weiqi
    Wang, Qing
    He, Kaifeng
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 629 - +
  • [6] Application of genetic algorithms to parameter estimation of bioprocesses
    L. J. Park
    C. H. Park
    C. Park
    T. Lee
    Medical and Biological Engineering and Computing, 1997, 35 : 47 - 49
  • [7] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, L.J.
    Park, C.H.
    Park, C.
    Lee, T.
    Medical and Biological Engineering and Computing, 1997, 35 (01): : 47 - 49
  • [8] Application of genetic algorithms for aerodynamic parameter estimation
    Qian, Wei-Qi
    Wang, Qing
    Wang, Wen-Zheng
    He, Kai-Feng
    Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2003, 21 (02):
  • [9] Signal modelling and algorithms for parameter estimation in pneumatic conveying
    Fuchs, Anton
    Zangl, Hubert
    Wypych, Peter
    POWDER TECHNOLOGY, 2007, 173 (02) : 126 - 139
  • [10] Genetic algorithms for rheological parameter estimation of magnetorheological fluids
    Chaudhuri, A
    Wereley, NM
    Radhakrishnan, R
    SMART STRUCTURES AND MATERIALS 2005: ACTIVE MATERIALS: BEHAVIOR AND MECHANICS, 2005, 5761 : 164 - 174