Phase equilibria in the ZnGeAs2-CdGeAs2 system

被引:2
|
作者
Marenkin, S. F. [1 ,2 ]
Aronov, A. N. [1 ]
Trukhan, V. M. [3 ]
Shelkovaya, T. V. [2 ]
Fedorchenko, I. V. [1 ]
Domuchovski, V. [4 ]
Lahderanta, E. [5 ]
机构
[1] Russian Acad Sci, NS Kurnakov Gen & Inorgan Chem Inst, Moscow 119991, Russia
[2] MISiS Natl Res Technol Univ, Moscow 119991, Russia
[3] Natl Acad Sci Belarus, GNPO Sci & Pract Ctr Mat Sci, Minsk 22072, BELARUS
[4] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
[5] Lappeenranta Univ Technol, Dept Math & Phys, FI-53851 Lappeenranta, Finland
基金
俄罗斯基础研究基金会;
关键词
Solid Solution; Differential Thermal Analysis; Chalcopyrite; Cation Sublattice; Solid Solu Tions;
D O I
10.1134/S0036023614020132
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The phase diagram of the ZnGeAs2-CdGeAs2 system was constructed using a set of physicochemical analysis methods (X-ray powder diffraction, differential thermal, and microstructural analyses). It was shown that there is a continuous series of solid solutions Zn (x) Cd1 - x GeAs2 in the system at temperatures above 600A degrees C. At temperatures below 600A degrees C, there is a significant phase separation region. The solubility at room temperature on the side of ZnGeAs2 does not exceed 12 mol % CdGeAs2, and that on the side of CdGeAs2 is no more than 16 mol % ZnGeAs2. The change in the crystal lattice parameters of the solid solutions within these concentration ranges obeys Vegard's law, which is indicative of the mutual replacement of Zn and Cd in the cation sublattice of the compounds ZnGeAs2 and CdGeAs2.
引用
收藏
页码:126 / 129
页数:4
相关论文
共 50 条
  • [1] Phase equilibria in the ZnGeAs2-CdGeAs2 system
    S. F. Marenkin
    A. N. Aronov
    V. M. Trukhan
    T. V. Shelkovaya
    I. V. Fedorchenko
    V. Domuchovski
    E. Lähderanta
    Russian Journal of Inorganic Chemistry, 2014, 59 : 126 - 129
  • [2] Phase equilibria in the ZnGeAs2-CdGeAs2 system
    Fedorchenko, Irina V.
    Aronov, Alexey N.
    Kilanski, Lukasz
    Domukhovski, Victor
    Reszka, Anna
    Kowalski, Bogdan J.
    Lahderanta, Erkki
    Dobrowolski, Witold
    Izotov, Alexander D.
    Marenkin, Sergey F.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 599 : 121 - 126
  • [3] Phase equilibria in the ZnGeAs2-MnAs system
    Aronov, A. N.
    Marenkin, S. F.
    Fedorchenko, I. V.
    Vasil'ev, P. N.
    Boeva, N. M.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2016, 61 (01) : 103 - 108
  • [4] Phase equilibria in the ZnGeAs2–MnAs system
    A. N. Aronov
    S. F. Marenkin
    I. V. Fedorchenko
    P. N. Vasil’ev
    N. M. Boeva
    Russian Journal of Inorganic Chemistry, 2016, 61 : 103 - 108
  • [5] PHASE-EQUILIBRIA IN THE CD3AS2-CDGEAS2-CDAS2 SYSTEM
    NIPAN, GD
    NIKOLAEVA, LN
    INORGANIC MATERIALS, 1994, 30 (08) : 940 - 945
  • [6] Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs 2 chalcopyrites: New materials for spintronics
    Koroleva L.I.
    Zashchirinskii D.M.
    Khapaeva T.M.
    Marenkin S.F.
    Fedorchenko I.V.
    Varnavskii S.A.
    Szymczak R.A.
    Krzumanska B.
    Bulletin of the Russian Academy of Sciences: Physics, 2010, 74 (10) : 1348 - 1351
  • [7] Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 chalcopyrites: A new materials for spintronics
    Koroleva, L. I.
    Zashchirinskii, D. M.
    Khapaeva, T. M.
    Morozov, A. I.
    Marenkin, S. F.
    Fedorchenko, I. V.
    Szymczak, R.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (23) : 2923 - 2928
  • [8] Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 Chalcopyrites: a New Advanced Materials for Spintronics
    Morozov, A.
    Koroleva, L.
    Zashchinnskii, D.
    Khapaeva, T.
    Marenkin, S.
    Fedorchenko, I.
    Szymczak, R.
    Krzymanska, B.
    TRENDS IN MAGNETISM, 2011, 168-169 : 31 - +
  • [9] PHYSIQUE DES SOLIDES - CONDUCTIVITE THERMIQUE DES COMPOSES CDSNAS2, CDGEAS2, ZNSNAS2 ET ZNGEAS2
    LEROUXHUGON, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1963, 256 (19): : 3991 - &
  • [10] Phase Equilibria in the TeO2-CdI2 System
    Vassilev, V.
    Aljihmani, L.
    Hristova-Vasileva, T.
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2014, 35 (05) : 575 - 580