Quantum Discord Determines the Interferometric Power of Quantum States

被引:205
|
作者
Girolami, Davide [1 ,2 ,9 ]
Souza, Alexandre M. [3 ]
Giovannetti, Vittorio [4 ,5 ]
Tufarelli, Tommaso [6 ]
Filgueiras, Jefferson G. [7 ]
Sarthour, Roberto S. [3 ]
Soares-Pinto, Diogo O. [8 ]
Oliveira, Ivan S. [3 ]
Adesso, Gerardo [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[4] CNR, Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[5] CNR, Ist Nanosci, I-56126 Pisa, Italy
[6] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[7] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany
[8] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil
[9] Univ Oxford, Clarendon Lab, Dept Phys, Oxford OX1 3PU, England
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
MIXED STATES; RESONANCE; LIMIT;
D O I
10.1103/PhysRevLett.112.210401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum discord of ensemble of quantum states
    Yao, Yao
    Huang, Jing-Zheng
    Zou, Xu-Bo
    Han, Zheng-Fu
    QUANTUM INFORMATION PROCESSING, 2014, 13 (07) : 1583 - 1594
  • [2] Quantum discord of ensemble of quantum states
    Yao Yao
    Jing-Zheng Huang
    Xu-Bo Zou
    Zheng-Fu Han
    Quantum Information Processing, 2014, 13 : 1583 - 1594
  • [3] Quantum computing: The power of discord
    Zeeya Merali
    Nature, 2011, 474 : 24 - 26
  • [4] Correlations in quantum states and the local creation of quantum discord
    Gessner, Manuel
    Laine, Elsi-Mari
    Breuer, Heinz-Peter
    Piilo, Jyrki
    PHYSICAL REVIEW A, 2012, 85 (05):
  • [5] Dynamic of quantum Fisher information and quantum interferometric power in multipartite coherent states
    Rachid Laghmach
    Hanane El Hadfi
    Wiam Kaydi
    Mohammed Daoud
    The European Physical Journal D, 2019, 73
  • [6] Dynamic of quantum Fisher information and quantum interferometric power in multipartite coherent states
    Laghmach, Rachid
    El Hadfi, Hanane
    Kaydi, Wiam
    Daoud, Mohammed
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (09):
  • [7] Quantum states with equal unlockable correlations and quantum discord
    Nikaeen, M.
    Mani, A.
    Bahrampour, A.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [8] On the quantum discord of general X states
    M. A. Yurischev
    Quantum Information Processing, 2015, 14 : 3399 - 3421
  • [9] Quantum Discord in Optical Coherent States
    A. El Allati
    S. Robles-Pérez
    M. El Baz
    International Journal of Theoretical Physics, 2014, 53 : 52 - 59
  • [10] On the quantum discord of general X states
    Yurischev, M. A.
    QUANTUM INFORMATION PROCESSING, 2015, 14 (09) : 3399 - 3421