FitzHugh-Nagumo revisited: Types of bifurcations, periodical forcing and stability regions by a Lyapunov functional

被引:38
|
作者
Kostova, T
Ravindran, R
Schonbek, M
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
来源
关键词
FitzHugh-Nagumo; subcritical and supercritical Hopf bifurcation; homoclinic bifurcation; periodic forcing;
D O I
10.1142/S0218127404009685
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study several aspects of FitzHugh-Nagumo's (FH-N) equations without diffusion. Some global stability results as well as the boundedness of solutions are derived by using a suitably defined Lyapunov functional. We show the existence of both supercritical and subcritical Hopf bifurcations. We demonstrate that the number of all bifurcation diagrams is 8 but that the possible sequential occurrences of bifurcation events is much richer. We present a numerical study of all example exhibiting a series of various bifurcations, including subcritical Hopf bifurcations, homoclinic bifurcations and saddle-node bifurcations of equilibria and of periodic solutions. Finally, we study periodically forced FH-N equations. We prove that phase-locking occurs independently of the magnitude of the periodic forcing.
引用
收藏
页码:913 / 925
页数:13
相关论文
共 50 条
  • [1] Types of bifurcations of FitzHugh-Nagumo maps
    Duarte, J
    Silva, L
    Ramos, JS
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 231 - 242
  • [2] Lyapunov functionals and stability for FitzHugh-Nagumo systems
    Freitas, P
    Rocha, C
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 208 - 227
  • [3] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [4] Bifurcations of FitzHugh-Nagumo (FHN) System
    Ongay Larios, Fernando
    Agueero Granados, Maximo Augusto
    CIENCIA ERGO-SUM, 2010, 17 (03) : 295 - 306
  • [5] Types of Bifurcations of FitzHugh–Nagumo Maps
    Jorge Duarte
    Luís Silva
    J. Sousa Ramos
    Nonlinear Dynamics, 2006, 44 : 231 - 242
  • [6] Hopf bifurcations in a network of FitzHugh-Nagumo biological neurons
    Popov, Igor Y.
    Fedorov, Evgeny G.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) : 847 - 866
  • [7] Experimental study of bifurcations in modified FitzHugh-Nagumo cell
    Binczak, S
    Kazantsev, V
    Nekorkin, VI
    Bilbault, JM
    ELECTRONICS LETTERS, 2003, 39 (13) : 961 - 962
  • [8] On the dynamical behaviour of FitzHugh-Nagumo systems: Revisited
    Ringkvist, M.
    Zhou, Y.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) : 2667 - 2687
  • [9] STRUCTURAL STABILITY FOR FITZHUGH-NAGUMO EQUATIONS
    Aliyeva, G. N.
    Kalantarov, V. K.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2011, 10 (02) : 289 - 293
  • [10] SYNCHRONIZATION OF THE STOCHASTIC FITZHUGH-NAGUMO EQUATIONS TO PERIODIC FORCING
    LONGTIN, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (7-8): : 835 - 846