Temporal convergence analysis of a locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media

被引:8
|
作者
Descombes, Stephane [1 ]
Lanteri, Stephane [1 ]
Moya, Ludovic [1 ]
机构
[1] Univ Cote Azur, CNRS, Inria, LJAD, Nice, France
关键词
Maxwell's equations; Time domain; Dispersive medium; Discontinuous Galerkin method; Convergence analysis; MAXWELLS EQUATIONS;
D O I
10.1016/j.cam.2016.09.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the approximation of the time domain Maxwell equations in a dispersive propagation medium by a Discontinuous Galerkin Time Domain (DGTD) method. The Debye model is used to describe the dispersive behavior of the medium. We adapt the locally implicit time integration method from Verwer (2010) and derive a convergence analysis to prove that the locally implicit DGTD method for Maxwell Debye equations retains its second order convergence. (C) 2016 Published by Elsevier B.V.
引用
下载
收藏
页码:122 / 132
页数:11
相关论文
共 50 条
  • [1] LOCALLY IMPLICIT DISCONTINUOUS GALERKIN TIME DOMAIN METHOD FOR ELECTROMAGNETIC WAVE PROPAGATION IN DISPERSIVE MEDIA APPLIED TO NUMERICAL DOSIMETRY IN BIOLOGICAL TISSUES
    Descombes, Stephane
    Lanteri, Stephane
    Moya, Ludovic
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (05): : A2611 - A2633
  • [2] An implicit discontinuous Galerkin time-domain method for two-dimensional electromagnetic wave propagation
    Catella, Adrien
    Dolean, Victorita
    Lanteri, Stephane
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 29 (03) : 602 - 625
  • [3] Locally implicit discontinuous Galerkin method for time domain electromagnetics
    Dolean, Victorita
    Fahs, Hassan
    Fezoui, Loula
    Lanteri, Stephane
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (02) : 512 - 526
  • [4] TEMPORAL CONVERGENCE OF A LOCALLY IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR MAXWELL'S EQUATIONS
    Moya, Ludovic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 1225 - 1246
  • [5] Discontinuous Galerkin time-domain method for GPR simulation in dispersive media
    Lu, T
    Cai, W
    Zhang, PW
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (01): : 72 - 80
  • [6] Time domain Discontinuous Galerkin Method with efficient modelling of boundary conditions for simulations of electromagnetic wave propagation
    Goedel, N.
    Lange, S.
    Clemens, M.
    2008 ASIA-PACIFIC SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY AND 19TH INTERNATIONAL ZURICH SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1 AND 2, 2008, : 594 - 597
  • [7] Transient electromagnetic wave propagation in laterally discontinuous, dispersive media
    Egorov, I
    Kristensson, G
    Weston, VH
    WAVE MOTION, 2001, 33 (01) : 67 - 77
  • [8] A Discontinuous Galerkin Finite Element Time-Domain Method Modeling of Dispersive Media
    Gedney, Stephen D.
    Young, John C.
    Kramer, Tyler C.
    Roden, J. Alan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 1969 - 1977
  • [9] Convergence of a discontinuous Galerkin scheme for the mixed time-domain Maxwell's equations in dispersive media
    Lanteri, Stephane
    Scheid, Claire
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 432 - 459
  • [10] Modeling of Dispersive Media within the Discontinuous Galerkin Finite Element Time-Domain Method
    Gedney, Stephen D.
    Young, John
    Kramer, Tyler
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,