Quantum-classical correspondence in perturbed chaotic systems

被引:104
|
作者
Benenti, G
Casati, G
机构
[1] Univ Studi Insubria, Int Ctr Study Dynam Syst, I-22100 Como, Italy
[2] Ist Nazl Fis Mat, Unita Como, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
来源
PHYSICAL REVIEW E | 2002年 / 65卷 / 06期
关键词
D O I
10.1103/PhysRevE.65.066205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss the behavior of fidelity for a classically chaotic quantum system. We show the existence of a critical value of the perturbation above which the quantum decay, exponential or power law, follows the classical one. The independence of the decay rate of the perturbation strength, discussed in the literature, is a consequence of the quantum-classical correspondence of the relaxation process.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The quantum-classical correspondence in chaotic dynamic systems
    Su, WY
    Li, QS
    [J]. MODERN PHYSICS LETTERS B, 2000, 14 (04): : 147 - 153
  • [2] Quantum-classical correspondence in integrable systems
    Zhao, Yiqiang
    Wu, Biao
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (09)
  • [3] Quantum-classical correspondence in integrable systems
    Yiqiang Zhao
    Biao Wu
    [J]. Science China Physics, Mechanics & Astronomy, 2019, 62
  • [4] Quantum-classical correspondence in integrable systems
    Yiqiang Zhao
    Biao Wu
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (09) : 99 - 107
  • [5] Quantum-classical comparison in chaotic systems
    Farini, A
    Boccaletti, S
    Arecchi, FT
    [J]. PHYSICAL REVIEW E, 1996, 53 (05): : 4447 - 4450
  • [6] Quantum-classical correspondence and mechanical analysis of a classical-quantum chaotic system
    毕海云
    齐国元
    胡建兵
    吴启亮
    [J]. Chinese Physics B, 2020, 29 (02) : 175 - 185
  • [7] Quantum-classical correspondence and mechanical analysis of a classical-quantum chaotic system
    Bi, Haiyun
    Qi, Guoyuan
    Hu, Jianbing
    Wu, Qiliang
    [J]. CHINESE PHYSICS B, 2020, 29 (02)
  • [8] Quantum-classical correspondence via Lionville dynamics .2. Correspondence for chaotic Hamiltonian systems
    Wilkie, J
    Brumer, P
    [J]. PHYSICAL REVIEW A, 1997, 55 (01): : 43 - 61
  • [9] A REMARK ON THE PROBLEM OF QUANTUM-CLASSICAL CORRESPONDENCE IN THE CASE OF CHAOTIC DYNAMICS
    KOLOVSKY, AR
    [J]. EUROPHYSICS LETTERS, 1994, 27 (02): : 79 - 84
  • [10] Quantum-classical correspondence principle for work distributions in a chaotic system
    Zhu, Long
    Gong, Zongping
    Wu, Biao
    Quan, H. T.
    [J]. PHYSICAL REVIEW E, 2016, 93 (06)