A SYSTEMATIC REVIEW OF MACHINE LEARNING MODELS FOR PREDICTING OUTCOMES OF STROKE WITH STRUCTURED DATA

被引:0
|
作者
Wang, W. [1 ]
Kiik, M. [2 ]
Peek, N. [3 ]
Curcin, V. [1 ]
Marshall, I. [1 ]
Rudd, A. [1 ]
Wang, Y. [1 ]
Douiri, A. [1 ]
Wolfe, C. [1 ]
Bray, B. [1 ]
机构
[1] Kings Coll London, Sch Populat Hlth & Environm Sci, London, England
[2] Kings Coll London, Sch Med Res, London, England
[3] Univ Manchester, Sch Hlth Sci, Manchester, Lancs, England
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
02473
引用
收藏
页码:641 / 641
页数:1
相关论文
共 50 条
  • [1] A systematic review of machine learning models for predicting outcomes of stroke with structured data
    Wang, Wenjuan
    Kiik, Martin
    Peek, Niels
    Curcin, Vasa
    Marshall, Iain J.
    Rudd, Anthony G.
    Wang, Yanzhong
    Douiri, Abdel
    Wolfe, Charles D.
    Bray, Benjamin
    PLOS ONE, 2020, 15 (06):
  • [2] Machine learning in predicting outcomes for stroke patients following rehabilitation treatment: A systematic review
    Zu, Wanting
    Huang, Xuemiao
    Xu, Tianxin
    Du, Lin
    Wang, Yiming
    Wang, Lisheng
    Nie, Wenbo
    PLOS ONE, 2023, 18 (06):
  • [3] Machine learning models for predicting preeclampsia: a systematic review
    Ranjbar, Amene
    Montazeri, Farideh
    Ghamsari, Sepideh Rezaei
    Mehrnoush, Vahid
    Roozbeh, Nasibeh
    Darsareh, Fatemeh
    BMC PREGNANCY AND CHILDBIRTH, 2024, 24 (01)
  • [4] MACHINE LEARNING MODELS FOR PREDICTING MORTALITY IN SEPSIS: A SYSTEMATIC REVIEW
    Kobayashi, Hirotada
    Amrein, Karin
    Lasky-Su, Jessica
    Christopher, Kenneth
    CRITICAL CARE MEDICINE, 2024, 52
  • [5] MACHINE LEARNING MODELS FOR PREDICTING MORTALITY IN SEPSIS: A SYSTEMATIC REVIEW
    Nikravangolsefid, Nasrin
    Reddy, Swetha
    Hong Hieu Troung
    Charkviani, Mariam
    Ninan, Jacob
    Kashani, Kianoush
    Garces, Juan Pablo Domecq
    CRITICAL CARE MEDICINE, 2024, 52
  • [6] Machine Learning Models for Predicting Neonatal Mortality: A Systematic Review
    Mangold, Cheyenne
    Zoretic, Sarah
    Thallapureddy, Keerthi
    Moreira, Axel
    Chorath, Kevin
    Moreira, Alvaro
    NEONATOLOGY, 2021, 118 (04) : 394 - 405
  • [7] Optimal inputs for machine learning models in predicting total joint arthroplasty outcomes: a systematic review
    Sanghvi, Parshva A.
    Shah, Aakash K.
    Hecht, Christian J.
    Karimi, Amir H.
    Kamath, Atul F.
    EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY, 2024, 34 (08): : 3809 - 3825
  • [8] MACHINE LEARNING MODELS FOR PREDICTING ACUTE KIDNEY INJURY: A SYSTEMATIC REVIEW
    Vagliano, Iacopo
    Chesnaye, Nicholas
    Leopold, Jan Hendrik
    Jager, Kitty J.
    Abu Hanna, Ameen
    Schut, Martijn C.
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2021, 36
  • [9] Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis
    Wang, Yanan
    Zhang, Zengyi
    Zhang, Zhimeng
    Chen, Xiaoying
    Liu, Junfeng
    Liu, Ming
    SYSTEMATIC REVIEWS, 2025, 14 (01)
  • [10] Machine learning for understanding and predicting neurodevelopmental outcomes in premature infants: a systematic review
    Baker, Stephanie
    Kandasamy, Yogavijayan
    PEDIATRIC RESEARCH, 2023, 93 (02) : 293 - 299