High-Speed, Inkjet-Printed Carbon Nanotube/Zinc Tin Oxide Hybrid Complementary Ring Oscillators

被引:122
|
作者
Kim, Bongjun [1 ]
Jang, Seonpil [1 ]
Geier, Michael L. [2 ]
Prabhumirashi, Pradyumna L. [2 ]
Hersam, Mark C. [2 ]
Dodabalapur, Ananth [1 ]
机构
[1] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
Inkjet printing; printed electronics; carbon nanotube transistors; zinc tin oxide transistors; ambipolar transistor-based circuits; printed complementary circuits; THIN-FILM TRANSISTORS; HIGH-MOBILITY; POLYMER SEMICONDUCTORS; THRESHOLD VOLTAGE; PERFORMANCE; LOGIC; CIRCUITS;
D O I
10.1021/nl5016014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The materials combination of inkjet-printed single-walled carbon nanotubes (SWCNTs) and zinc tin oxide (ZTO) is very promising for large-area thin-film electronics. We compare the characteristics of conventional complementary inverters and ring oscillators measured in air (with SWCNT p-channel field effect transistors (FETs) and ZTO n-channel FETs) with those of ambipolar inverters and ring oscillators comprised of bilayer SWCNT/ZTO FETs. This is the first such comparison between the performance characteristics of ambipolar and conventional inverters and ring oscillators. The measured signal delay per stage of 140 ns for complementary ring oscillators is the fastest for any ring oscillator circuit with printed semiconductors to date.
引用
收藏
页码:3683 / 3687
页数:5
相关论文
共 36 条
  • [1] Voltage-Controlled Ring Oscillators Based on Inkjet Printed Carbon Nanotubes and Zinc Tin Oxide
    Kim, Bongjun
    Park, Jaeyoung
    Geier, Michael L.
    Hersam, Mark C.
    Dodabalapur, Ananth
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) : 12009 - 12014
  • [2] Inkjet-Printed Zinc Tin Oxide Thin-Film Transistor
    Kim, Dongjo
    Jeong, Youngmin
    Song, Keunkyu
    Park, Seong-Kee
    Cao, Guozhong
    Moon, Jooho
    [J]. LANGMUIR, 2009, 25 (18) : 11149 - 11154
  • [3] Inkjet-printed zinc-tin-oxide TFTs with a solution-processed hybrid dielectric layer
    Hye-Ryun Jang
    Young-Jin Kwack
    Woon-Seop Choi
    [J]. Journal of the Korean Physical Society, 2014, 65 : 1435 - 1440
  • [4] Inkjet-printed zinc-tin-oxide TFTs with a solution-processed hybrid dielectric layer
    Jang, Hye-Ryun
    Kwack, Young-Jin
    Choi, Woon-Seop
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2014, 65 (09) : 1435 - 1440
  • [5] Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures
    Kim, Bongjun
    Jang, Seonpil
    Geier, Michael L.
    Prabhumirashi, Pradyumna L.
    Hersam, Mark C.
    Dodabalapur, Ananth
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (06)
  • [6] Effect of gate electrode conductivity on operation frequency of inkjet-printed complementary polymer ring oscillators
    Han, Hyun
    Amegadze, Paul S. K.
    Park, Jongwoon
    Baeg, Kang-Jun
    Noh, Yong-Young
    [J]. THIN SOLID FILMS, 2013, 546 : 141 - 146
  • [7] Transparent carbon nanotube patterns templated by inkjet-printed graphene oxide nanosheets
    Han, Joong Tark
    Kim, Jun Suk
    Kwak, Donghoon
    Kim, Bo Gyeong
    Jeong, Bo Hwa
    Jeong, Seung Yol
    Jeong, Hee Jin
    Cho, Kilwon
    Lee, Geon-Woong
    [J]. RSC ADVANCES, 2011, 1 (01) : 44 - 47
  • [8] A Carbon Nanotube Inkjet-Printed Hybrid Circuit for Non-Conventional Computing
    Gardner, Steven D.
    Islam, Md T.
    Alexander, J. Iwan D.
    Massoud, Yehia
    Haider, Mohammad R.
    [J]. 2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 373 - 376
  • [9] Inkjet-Printed Indium Oxide/Carbon Nanotube Heterojunctions for Gate-Tunable Diodes
    Kim, Bongjun
    [J]. ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01):
  • [10] High-speed hybrid complementary ring oscillators based on solution-processed organic and amorphous metal oxide semiconductors
    Wei, Xiaozhu
    Kumagai, Shohei
    Makita, Tatsuyuki
    Tsuzuku, Kotaro
    Yamamura, Akifumi
    Sasaki, Mari
    Watanabe, Shun
    Takeya, Jun
    [J]. COMMUNICATIONS MATERIALS, 2023, 4 (01)