Numerical solution to 3D bilinear Fokker-Planck control problem

被引:2
|
作者
Butt, M. M. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran 31261, Saudi Arabia
关键词
Fokker-Planck equation; optimal control; stochastic process; Chang-Cooper scheme; staggered grid; EQUATION;
D O I
10.1080/00207160.2022.2067987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterization and numerical scheme to control problem governed by a three-dimensional (3D) time-dependent Fokker-Planck (FP) equation is presented. We formulate a control formulation that controls the drift of the stochastic (FP) process. In this way, the probability density function attains a specific configuration. Moreover, a FP control strategy for collective motion is investigated and first-order optimality conditions are presented. On staggered grids, the Chang-Cooper discretization scheme that ensures the positivity, second-order accuracy, and conservativeness to the FP equation is employed to the discretized state (respectively adjoint) system. Furthermore, a line search strategy is applied to update the control variable. Results of numerical experiments show the efficiency of the proposed numerical scheme to stochastic (FP) control problems.
引用
收藏
页码:2466 / 2481
页数:16
相关论文
共 50 条
  • [1] Bilinear Optimal Control of the Fokker-Planck Equation
    Fleig, Arthur
    Guglielmi, Roberto
    IFAC PAPERSONLINE, 2016, 49 (08): : 254 - 259
  • [2] NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION
    KULSRUD, RM
    SUN, YC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (10): : 1262 - 1262
  • [3] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PROCEEDINGS OF THE 1997 PARTICLE ACCELERATOR CONFERENCE, VOLS 1-3: PLENARY AND SPECIAL SESSIONS ACCELERATORS AND STORAGE RINGS - BEAM DYNAMICS, INSTRUMENTATION, AND CONTROLS, 1998, : 1825 - 1827
  • [4] Numerical solution for Fokker-Planck equations in accelerators
    Zorzano, MP
    Mais, H
    Vazquez, L
    PHYSICA D, 1998, 113 (2-4): : 379 - 381
  • [5] Meshless method for the numerical solution of the Fokker-Planck equation
    Askari, Maysam
    Adibi, Hojatollah
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (04) : 1211 - 1216
  • [6] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, M.P.
    Mais, H.
    Vazquez, L.
    Applied Mathematics and Computation (New York), 1999, 98 (2-3): : 109 - 117
  • [7] Numerical solution of two dimensional Fokker-Planck equations
    Zorzano, MP
    Mais, H
    Vazquez, L
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 98 (2-3) : 109 - 117
  • [8] Numerical solution of the Fokker-Planck equation with variable coefficients
    Kim, Arnold D.
    Tranquilli, Paul
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2008, 109 (05): : 727 - 740
  • [9] NUMERICAL-SOLUTION OF A SIMPLE FOKKER-PLANCK EQUATION
    VANAJA, V
    APPLIED NUMERICAL MATHEMATICS, 1992, 9 (06) : 533 - 540
  • [10] Numerical solution of the space fractional Fokker-Planck equation
    Liu, F
    Anh, V
    Turner, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 166 (01) : 209 - 219