Distributed quantum sensing using continuous-variable multipartite entanglement

被引:134
|
作者
Zhuang, Quntao [1 ,2 ]
Zhang, Zheshen [1 ,3 ]
Shapiro, Jeffrey H. [1 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Arizona, Dept Mat Sci & Engn, Tucson, AZ 85721 USA
关键词
STATES;
D O I
10.1103/PhysRevA.97.032329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Distributed quantum sensing uses quantum correlations between multiple sensors to enhance the measurement of unknown parameters beyond the limits of unentangled systems. We describe a sensing scheme that uses continuous-variable multipartite entanglement to enhance distributed sensing of field-quadrature displacement. By dividing a squeezed-vacuum state between multiple homodyne-sensor nodes using a lossless beam-splitter array, we obtain a root-mean-square (rms) estimation error that scales inversely with the number of nodes (Heisenberg scaling), whereas the rms error of a distributed sensor that does not exploit entanglement is inversely proportional to the square root of the number of nodes (standard quantum limit scaling). Our sensor's scaling advantage is destroyed by loss, but it nevertheless retains an rms-error advantage in settings in which there is moderate loss. Our distributed sensing scheme can be used to calibrate continuous-variable quantum key distribution networks, to perform multiple-sensor cold-atom temperature measurements, and to do distributed interferometric phase sensing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Distributed Quantum Sensing Using Continuous-Variable Multipartite Entanglement
    Zhuang, Quntao
    Zhang, Zheshen
    Shapiro, Jeffrey H.
    [J]. 2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [2] Repeater-enhanced distributed quantum sensing based on continuous-variable multipartite entanglement
    Xia, Yi
    Zhuang, Quntao
    Clark, William
    Zhang, Zheshen
    [J]. PHYSICAL REVIEW A, 2019, 99 (01)
  • [3] Multipartite continuous-variable optical quantum entanglement: Generation and application
    Asavanant, Warit
    Furusawa, Akira
    [J]. PHYSICAL REVIEW A, 2024, 109 (04)
  • [5] Conditions for multipartite continuous-variable entanglement
    Shchukin, E.
    Vogel, W.
    [J]. PHYSICAL REVIEW A, 2006, 74 (03):
  • [6] Detecting genuine multipartite continuous-variable entanglement
    van Loock, P
    Furusawa, A
    [J]. PHYSICAL REVIEW A, 2003, 67 (05):
  • [7] Hierarchies of multipartite entanglement for continuous-variable states
    Valido, Antonio A.
    Levi, Federico
    Mintert, Florian
    [J]. PHYSICAL REVIEW A, 2014, 90 (05):
  • [8] Multipartite continuous-variable entanglement from concurrent nonlinearities
    Pfister, O
    Feng, S
    Jennings, G
    Pooser, R
    Xie, DR
    [J]. PHYSICAL REVIEW A, 2004, 70 (02): : 020302 - 1
  • [9] Deterministic distribution of multipartite entanglement in a quantum network by continuous-variable polarization states
    Wu, Liang
    Chai, Ting
    Liu, Yanhong
    Zhou, Yaoyao
    Qin, Jiliang
    Yan, Zhihui
    Jia, Xiaojun
    [J]. OPTICS EXPRESS, 2022, 30 (04) : 6388 - 6396
  • [10] Generalized conditions for genuine multipartite continuous-variable entanglement
    Shchukin, E.
    van Loock, P.
    [J]. PHYSICAL REVIEW A, 2015, 92 (04):