Efficient numerical schemes for fractional water wave models

被引:18
|
作者
Li, Can [1 ,2 ]
Zhao, Shan [2 ,3 ]
机构
[1] Xian Univ Technol, Sch Sci, Dept Appl Math, Xian 710054, Shaanxi, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100084, Peoples R China
[3] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
基金
中国国家自然科学基金;
关键词
Fractional water wave models; Finite difference schemes; Stability; Convergence; FINITE-DIFFERENCE APPROXIMATIONS; DIFFUSION; EQUATIONS; LAW;
D O I
10.1016/j.camwa.2015.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, efficient numerical schemes are proposed for solving the fractional water wave models that describe the propagation of surface water wave. By using the weighted and shifted Griinwald-Letnikov (WSGL) formula to approximate the nonlocal fractional operators, we design a series of second order accurate difference schemes for the considered models. The existence, stability and convergence of numerical solutions of the proposed numerical schemes are established rigorously. The analysis shows that the proposed numerical schemes are unconditionally stable with second order accuracy for both temporal and spatial discretizations. Several numerical results are provided to verify the efficiency and accuracy of our theoretical analysis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:238 / 254
页数:17
相关论文
共 50 条
  • [1] numerical schemes to solve fractional diabetes models
    Abou Hasan, Muner M.
    Alghanmi, Ahlam M.
    Al Ali, Hannah
    Mukandavire, Zindoga
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 29 - 40
  • [2] Efficient numerical schemes for population balance models
    Inguva, Pavan K.
    Schickel, Kaylee C.
    Braatz, Richard D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 162
  • [3] Efficient numerical schemes for multidimensional population balance models
    Inguva, Pavan K.
    Braatz, Richard D.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2023, 170
  • [4] Two efficient modeling schemes for fractional Laplacian viscoacoustic wave equation
    Chen, Hanming
    Zhou, Hui
    Li, Qingqing
    Wang, Yufeng
    [J]. GEOPHYSICS, 2016, 81 (05) : T233 - T249
  • [5] Analytical solutions and numerical schemes of certain generalized fractional diffusion models
    Ndolane Sene
    [J]. The European Physical Journal Plus, 134
  • [6] Analytical solutions and numerical schemes of certain generalized fractional diffusion models
    Sene, Ndolane
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [7] Efficient numerical schemes for the solution of generalized time fractional Burgers type equations
    Zohreh Asgari
    S. M. Hosseini
    [J]. Numerical Algorithms, 2018, 77 : 763 - 792
  • [8] Efficient numerical schemes for the solution of generalized time fractional Burgers type equations
    Asgari, Zohreh
    Hosseini, S. M.
    [J]. NUMERICAL ALGORITHMS, 2018, 77 (03) : 763 - 792
  • [9] Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient
    Zhao, Xuan
    Xu, Qinwu
    [J]. APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3848 - 3859
  • [10] On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models
    Shams, Mudassir
    Carpentieri, Bruno
    [J]. MATHEMATICS, 2023, 11 (24)