Smooth maps and real algebraic morphisms

被引:2
|
作者
Bochnak, J
Kucharz, W
机构
[1] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
D O I
10.4153/CMB-1999-052-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a compact nonsingular real algebraic variety and let Y be either the blowup of P-n(R) along a linear subspace or a nonsingular hypersurface of P-m(R) x P-n(R) of bidegree (1, 1). It is proved that a ---infinity map f: X --> Y can be approximated by regular maps if and only if f* (H-1(Y, Z/2)) subset of or equal to H-alg(1)(X, Z/2)' where H-alg(1) (X, Z/2) is the subgroup of H-1(X, Z/2) generated by the cohomology classes of algebraic hypersurfaces in X. This follows from another result on maps into generalized flag varieties.
引用
收藏
页码:445 / 451
页数:7
相关论文
共 50 条