BOUNDEDNESS OF SUBLINEAR OPERATORS IN HERZ-TYPE HARDY SPACES

被引:14
|
作者
Zhou, Yuan [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2009年 / 13卷 / 03期
关键词
Hardy space; Atom; Herz space; Sublinear operator; RD-SPACES; HP; ATOMS;
D O I
10.11650/twjm/1500405453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p is an element of (0, 1], q is an element of (1, infinity), alpha is an element of [n(1 - 1/q), infinity) and w(1), w(2) is an element of A(1). The author proves that the norms in weighted Herz-type Hardy spaces H(K) over dot(q)(alpha,p)(w(1), w(2)) and HK(q)(alpha,p)(w(1), w(2)) can be achieved by finite central atomic decompositions in some dense subspaces of them. As an application, the author proves that if T is a sublinear operator and maps all central (alpha, q, s, w(1), w(2))(0)-atoms (resp. central (alpha, q, s, w(1), w(2))-atoms of restrict type) into uniformly bounded elements of certain quasi-Banach space B for certain nonnegative integer s no less than the integer part of alpha - n(1 - 1/q), then T uniquely extends to a bounded operator from H(K) over dot(q)(alpha,p) (w(1), w(2)) (resp. HK(q)(alpha,p) (w(1), w(2))) to B.
引用
收藏
页码:983 / 996
页数:14
相关论文
共 50 条