COVID-19 diagnosis using deep learning neural networks applied to CT images

被引:7
|
作者
Akinyelu, Andronicus A. [1 ]
Blignaut, Pieter [1 ]
机构
[1] Univ Free State, Dept Comp Sci & Informat, Bloemfontein, South Africa
来源
关键词
COVID-19; diagnosis; convolutional neural network; CT images; deep learning networks; pre-trained models;
D O I
10.3389/frai.2022.919672
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
COVID-19, a deadly and highly contagious virus, caused the deaths of millions of individuals around the world. Early detection of the virus can reduce the virus transmission and fatality rate. Many deep learning (DL) based COVID-19 detection methods have been proposed, but most are trained on either small, incomplete, noisy, or imbalanced datasets. Many are also trained on a small number of COVID-19 samples. This study tackles these concerns by introducing DL-based solutions for COVID-19 diagnosis using computerized tomography (CT) images and 12 cutting-edge DL pre-trained models with acceptable Top-1 accuracy. All the models are trained on 9,000 COVID-19 samples and 5,000 normal images, which is higher than the COVID-19 images used in most studies. In addition, while most of the research used X-ray images for training, this study used CT images. CT scans capture blood arteries, bones, and soft tissues more effectively than X-Ray. The proposed techniques were evaluated, and the results show that NASNetLarge produced the best classification accuracy, followed by InceptionResNetV2 and DenseNet169. The three models achieved an accuracy of 99.86, 99.79, and 99.71%, respectively. Moreover, DenseNet121 and VGG16 achieved the best sensitivity, while InceptionV3 and InceptionResNetV2 achieved the best specificity. DenseNet121 and VGG16 attained a sensitivity of 99.94%, while InceptionV3 and InceptionResNetV2 achieved a specificity of 100%. The models are compared to those designed in three existing studies, and they produce better results. The results show that deep neural networks have the potential for computer-assisted COVID-19 diagnosis. We hope this study will be valuable in improving the decisions and accuracy of medical practitioners when diagnosing COVID-19. This study will assist future researchers in minimizing the repetition of analysis and identifying the ideal network for their tasks.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Shah, Vruddhi
    Keniya, Rinkal
    Shridharani, Akanksha
    Punjabi, Manav
    Shah, Jainam
    Mehendale, Ninad
    EMERGENCY RADIOLOGY, 2021, 28 (03) : 497 - 505
  • [2] Diagnosis of COVID-19 using CT scan images and deep learning techniques
    Vruddhi Shah
    Rinkal Keniya
    Akanksha Shridharani
    Manav Punjabi
    Jainam Shah
    Ninad Mehendale
    Emergency Radiology, 2021, 28 : 497 - 505
  • [3] Deep Learning for COVID-19 Diagnosis from CT Images
    Loddo, Andrea
    Pili, Fabio
    Di Ruberto, Cecilia
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [4] COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms
    Canayaz, Murat
    Sehribanoglu, Sanem
    Ozdag, Recep
    Demir, Murat
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (07): : 5349 - 5365
  • [5] COVID-19 diagnosis on CT images with Bayes optimization-based deep neural networks and machine learning algorithms
    Murat Canayaz
    Sanem Şehribanoğlu
    Recep Özdağ
    Murat Demir
    Neural Computing and Applications, 2022, 34 : 5349 - 5365
  • [6] COVID-19 diagnosis from chest CT scan images using deep learning
    Alassiri, Raghad
    Abukhodair, Felwa
    Kalkatawi, Manal
    Khashoggi, Khalid
    Alotaibi, Reem
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2022, 32 (03): : 65 - 72
  • [7] An approach for recognizing COVID-19 cases using Convolutional Neural Networks applied to CT scan images
    Do, Cuong M.
    Vu, Lan
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [8] Effect of Pre-processing of CT Images on the Performance of Deep Neural Networks Based Diagnosis of COVID-19
    Revelo Luna, David
    Eduardo Mejia, Julio
    Munoz Chaves, Javier
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (11): : 992 - 1000
  • [9] Diagnosis of COVID-19 CT Scans Using Convolutional Neural Networks
    Chang V.
    Mcwann S.
    Hall K.
    Xu Q.A.
    Ganatra M.A.
    SN Computer Science, 5 (5)
  • [10] Automated Detection of COVID-19 Cases using Recent Deep Convolutional Neural Networks and CT images
    Chetoui, Mohamed
    Akhloufi, Moulay A.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3297 - 3300