Data-driven distributionally robust MPC for systems with uncertain dynamics

被引:3
|
作者
Micheli, Francesco [1 ]
Summers, Tyler [2 ]
Lygeros, John [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Informat Technol & Elect Engn, Automat Control Lab, Zurich, Switzerland
[2] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75083 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MODEL-PREDICTIVE CONTROL;
D O I
10.1109/CDC51059.2022.9992469
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel data-driven distributionally robust Model Predictive Control formulation for unknown discrete-time linear time-invariant systems affected by unknown and possibly unbounded additive uncertainties. We use off-line collected data and an approximate model of the dynamics to formulate a finite-horizon optimization problem. To account for both the uncertainty related to the dynamics and the disturbance acting on the system, we resort to a distributionally robust formulation that optimizes the cost expectation while satisfying Conditional Value-at-Risk constraints with respect to the worst-case probability distributions of the uncertainties within an ambiguity set defined using the Wasserstein metric. Using results from the distributionally robust optimization literature we derive a tractable finite-dimensional convex optimization problem with finite-sample guarantees for the class of convex piecewise affine cost and constraint functions. The performance of the proposed algorithm is demonstrated in closed-loop simulation on a simple numerical example.
引用
收藏
页码:4788 / 4793
页数:6
相关论文
共 50 条
  • [1] Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems
    Coppens, Peter
    Patrinos, Panagiotis
    [J]. IEEE Control Systems Letters, 2022, 6 : 1274 - 1279
  • [2] Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems
    Coppens, Peter
    Patrinos, Panagiotis
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 1274 - 1279
  • [3] Robust MPC for constrained uncertain systems with data-driven improvement
    Yang, Lingyi
    Li, Dewei
    Lu, Jianbo
    Xi, Yugeng
    Li, Bin
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 3623 - 3628
  • [4] An efficient data-driven distributionally robust MPC leveraging linear programming
    Zhong, Zhengang
    del Rio-Chanona, Ehecatl Antonio
    Petsagkourakis, Panagiotis
    [J]. 2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2022 - 2027
  • [5] Cooperative Data-Driven Distributionally Robust Optimization
    Cherukuri, Ashish
    Cortes, Jorge
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 4400 - 4407
  • [6] Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems
    Mieth, Robert
    Dvorkin, Yury
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2018, 2 (03): : 363 - 368
  • [7] Data-driven distributionally robust control of partially observable jump linear systems
    Schuurmans, Mathijs
    Patrinos, Panagiotis
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4332 - 4337
  • [8] Data-Driven Distributionally Robust Chance-Constrained Unit Commitment With Uncertain Wind Power
    Shi, Zhichao
    Liang, Hao
    Dinavahi, Venkata
    [J]. IEEE ACCESS, 2019, 7 : 135087 - 135098
  • [9] Robust Constraint Satisfaction in Data-Driven MPC
    Berberich, Julian
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    [J]. 2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 1260 - 1267
  • [10] A Data-driven Distributionally Robust Operational Model for Urban Integrated Energy Systems
    Gao, Hongjun
    Liu, Zhenyu
    Liu, Youbo
    Wang, Lingfeng
    Liu, Junyong
    [J]. CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (03): : 789 - 800