A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation

被引:54
|
作者
Hynes, Sara R. [1 ]
Rauch, Millicent F. [1 ]
Bertram, James P. [1 ]
Lavik, Erin B. [1 ]
机构
[1] Yale Univ, Dept Biomed Engn, New Haven, CT 06520 USA
关键词
hydrogel; differentiation; migration; neural stem cells; tissue engineering; CENTRAL-NERVOUS-SYSTEM; GFP TRANSGENIC MICE; PROGENITOR CELLS; NEURONAL DIFFERENTIATION; PEG HYDROGELS; IN-VIVO; TRANSPLANTATION; ADHESION; CYTOTOXICITY; DIACRYLATE;
D O I
10.1002/jbm.a.31987
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Neural stem cells (NSCs) have the potential to replace the major cell types of the central nervous system (CNS) and may be important in therapies for injuries to and diseases of the CNS. However, for such treatments to be safe and successful, NSCs must survive and differentiate appropriately following transplantation. A number of polymer scaffolds have shown promise in improving the Survival and promoting the differentiation of NSCs. To capitalize on the interaction between scaffolds and NSCs, we need to determine the fundamental material properties that influence NSC behavior. To investigate the role of material properties on NSCs, we synthesized a library of 52 hydrogels composed of poly(ethylene glycol) and poly(L-lysine) (PLL). This library of hydrogels allows independent variation of chemical and mechanical properties across a wide range Of Values. By Culturing NSCs on this library, we have identified a subset of gels that promotes NSC migration and a further Subset that promotes NSC differentiation. By combining the material properties of these Subsets with the cell behavior, we determined that mechanical properties play a critical role in NSC behavior with elastic moduli promoting NSC migration and neuronal differentiation. Amine concentration is less critical, but PLL molecular weight also plays a role in NSC differentiation. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 89A: 499-509, 2009
引用
收藏
页码:499 / 509
页数:11
相关论文
共 50 条
  • [1] Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells
    Hynes, Sara Royce
    Mcgregor, Lynn M.
    Rauch, Millicent Ford
    Lavik, Erin B.
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (08) : 1017 - 1030
  • [2] Spectral study of interaction between poly(L-lysine)-poly(ethylene glycol)-poly(L-lysine) and nucleic acids
    He, Yu
    Yan, Qiujun
    Song, Gongwu
    Chen, Juan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2011, 22 (06) : 1431 - 1438
  • [3] Spectral study of interaction between poly(l-lysine)–poly(ethylene glycol)–poly(l-lysine) and nucleic acids
    Yu He
    Qiujun Yan
    Gongwu Song
    Juan Chen
    Journal of Materials Science: Materials in Medicine, 2011, 22 : 1431 - 1438
  • [4] Effects of Poly(L-lysine), Poly(acrylic acid) and Poly(ethylene glycol) on the Adhesion, Proliferation and Chondrogenic Differentiation of Human Mesenchymal Stem Cells
    Lu, Hongxu
    Guo, Likun
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2009, 20 (5-6) : 577 - 589
  • [5] Modular Multifunctional Poly(ethylene glycol) Hydrogels for Stem Cell Differentiation
    Singh, Anirudha
    Zhan, Jianan
    Ye, Zhaoyang
    Elisseeff, Jennifer H.
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (05) : 575 - 582
  • [6] New poly(propylene glycol)- and poly(ethylene glycol)-based polymer gelators with L-lysine
    Suzuki, M
    Owa, S
    Shirai, H
    Hanabusa, K
    MACROMOLECULAR RAPID COMMUNICATIONS, 2005, 26 (10) : 803 - 807
  • [7] Poly(L-lysine)-poly(ethylene glycol) layers with different structure and their influence on silica suspension stability
    Wisniewska, Malgorzata
    Ostolska, Iwona
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (06) : 742 - 746
  • [8] INTERFACIAL PHOTOPOLYMERIZATION OF POLY(ETHYLENE GLYCOL)-BASED HYDROGELS UPON ALGINATE POLY(L-LYSINE) MICROCAPSULES FOR ENHANCED BIOCOMPATIBILITY
    SAWHNEY, AS
    PATHAK, CP
    HUBBELL, JA
    BIOMATERIALS, 1993, 14 (13) : 1008 - 1016
  • [9] HYDROGELS BASED ON WATER-SOLUBLE POLY(ETHER URETHANES) DERIVED FROM L-LYSINE AND POLY(ETHYLENE GLYCOL)
    NATHAN, A
    BOLIKAL, D
    VYAVAHARE, N
    ZALIPSKY, S
    KOHN, J
    MACROMOLECULES, 1992, 25 (18) : 4476 - 4484
  • [10] Polyethylenimine-grafted copolymer of poly(L-lysine) and poly(ethylene glycol) for gene delivery
    Dai, Jian
    Zou, Seyin
    Pei, Yuanyuan
    Cheng, Du
    Ai, Hua
    Shuai, Xintao
    BIOMATERIALS, 2011, 32 (06) : 1694 - 1705