Infinitely Many Solutions for Generalized Quasilinear Schrodinger Equations with a Finite Potential Well

被引:3
|
作者
Shi, Hongxia [1 ]
Chen, Haibo [2 ]
机构
[1] Hunan First Normal Univ, Sch Math & Computat Sci, Changsha 410205, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Generalized quasilinear Schrodinger equations; Finite depth potential well; Perturbation methods; SOLITON-SOLUTIONS; CRITICAL GROWTH; FRACTIONAL EQUATIONS; PERTURBATION METHOD; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; WEAK SOLUTIONS; EXISTENCE; PARAMETER; PLASMA;
D O I
10.1007/s41980-018-0044-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper focuses on the following generalized quasilinear Schrodinger equations: div( g2 (u). u) + g(u) g (u)|. u| 2 + V(x) u = f (x, u), x. RN where and is an even differential function. By using the methods of perturbation and the Mountain Pass Theorem, we obtain the existence and multiplicity of bound state solutions for this problem with a finite depth potential well, extending the recent results from the literature.
引用
收藏
页码:691 / 705
页数:15
相关论文
共 50 条