Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders

被引:0
|
作者
Stanton, Samuel [1 ]
Maddox, Wesley J. [1 ]
Gruver, Nate [2 ]
Maffettone, Phillip [3 ]
Delaney, Emily [3 ]
Greenside, Peyton [3 ]
Wilson, Andrew Gordon [1 ,2 ]
机构
[1] NYU, Ctr Data Sci, New York, NY 10012 USA
[2] NYU, Courant Inst Math Sci, New York, NY USA
[3] BigHat Biosci, San Mateo, CA USA
关键词
GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian optimization (BayesOpt) is a gold standard for query-efficient continuous optimization. However, its adoption for drug design has been hindered by the discrete, high-dimensional nature of the decision variables. We develop a new approach (LaMBO) which jointly trains a denoising autoencoder with a discriminative multi-task Gaussian process head, allowing gradient-based optimization of multi-objective acquisition functions in the latent space of the autoencoder. These acquisition functions allow LaMBO to balance the explore-exploit tradeoff over multiple design rounds, and to balance objective tradeoffs by optimizing sequences at many different points on the Pareto frontier. We evaluate LaMBO on two small-molecule design tasks, and introduce new tasks optimizing in silico and in vitro properties of large-molecule fluorescent proteins. In our experiments LaMBO outperforms genetic optimizers and does not require a large pretraining corpus, demonstrating that BayesOpt is practical and effective for biological sequence design.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Regularizing Trajectory Optimization with Denoising Autoencoders
    Boney, Rinu
    Di Palo, Norman
    Berglund, Mathias
    Ilin, Alexander
    Kannala, Juho
    Rasmus, Antti
    Valpola, Harri
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Constrained Bayesian optimization for automatic chemical design using variational autoencoders
    Griffiths, Ryan-Rhys
    Hernandez-Lobato, Jose Miguel
    [J]. CHEMICAL SCIENCE, 2020, 11 (02) : 577 - 586
  • [3] Accelerating the Design of Multishell Upconverting Nanoparticles through Bayesian Optimization
    Xia, Xiaojing
    Sivonxay, Eric
    Helms, Brett A.
    Blau, Samuel M.
    Chan, Emory M.
    [J]. NANO LETTERS, 2023, 23 (23) : 11129 - 11136
  • [4] Bayesian Optimization for Design of Multiscale Biological Circuits
    Merzbacher, Charlotte
    Mac Aodha, Oisin
    Oyarzun, Diego A.
    [J]. ACS SYNTHETIC BIOLOGY, 2023, 12 (07): : 2073 - 2082
  • [5] Sequential Bayesian optimization for accelerating the design of sodium metal battery nucleation layers
    Thelen, Adam
    Zohair, Murtaza
    Ramamurthy, Jayanth
    Harkaway, Andrew
    Jiao, Weimin
    Ojha, Mihir
    Ul Ishtiaque, Mahdi
    Kingston, Todd A.
    Pint, Cary L.
    Hu, Chao
    [J]. JOURNAL OF POWER SOURCES, 2023, 581
  • [6] Accelerating the combinatorial optimization process for phosphor materials by Bayesian optimization
    Suzuki, Shizuka
    Dazai, Takuro
    Yamamoto, Yukio
    Koinuma, Hideomi
    Takahashi, Ryota
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2023, 62 (11)
  • [7] Bayesian machine learning optimization of microneedle design for biological fluid sampling
    Tarar, Ceren
    Aydin, Erdal
    Yetisen, Ali K.
    Tasoglu, Savas
    [J]. SENSORS & DIAGNOSTICS, 2023, 2 (04): : 858 - 866
  • [8] Bayesian Optimization for Accelerating Hyper-parameter Tuning
    Vu Nguyen
    [J]. 2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 302 - 305
  • [9] Adversarial Autoencoders for Metasurface Design Optimization (invited)Y
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    [J]. 2020 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (2020 ACES-MONTEREY), 2020,
  • [10] Optimizing training trajectories in variational autoencoders via latent Bayesian optimization approach *
    Biswas, Arpan
    Vasudevan, Rama
    Ziatdinov, Maxim
    Kalinin, Sergei, V
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):