Local asymptotic inference for nonparametric regression with censored survival data

被引:1
|
作者
Liu, Yanyan [1 ]
Mao, Guangcai [1 ,2 ]
Zhao, Xingqiu [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Censored survival data; Cox proportional hazards model; functional Bahadur representation; nonparametric statistical inference; reproducing kernel Hilbert space; MODELS; TESTS;
D O I
10.1080/10485252.2020.1837367
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a penalised nonparametric estimation of the relative risk function in the Cox proportional hazards model for survival data with right censoring. We derive the convergence rate, functional Bahadur representation (FBR) and local asymptotic normality of the nonparametric estimator by using reproducing kernel Hilbert space, counting process and empirical process theory. The new theoretical results fill the gap in the smoothing splines literature for nonparametric estimation in survival models. Furthermore, we construct the corresponding local confidence intervals by the bootstrap method. Extensive simulation studies are conducted to validate the proposed method and compare with the Bayesian confidence intervals, and a data example from the Stanford heart transplant study is provided for illustration.
引用
收藏
页码:1015 / 1028
页数:14
相关论文
共 50 条