Semi-Supervised Learning Methods for Network Intrusion Detection

被引:0
|
作者
Chen, Chuanliang [2 ]
Gong, Yunchao [3 ]
Tian, Yingjie [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100080, Peoples R China
[2] Beijing Normal Univ, Dept Comp Sci, Beijing 100875, Peoples R China
[3] Nanjing Univ, Software Inst, Nanjing 210089, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-Supervised Learning; Transductive Learning; Intrusion Dection; Data Mining;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently increasing interests of applying or developing specialized machine learning techniques have attracted many researchers in the intrusion detection community. Existing research work show: the supervised algorithms deteriorates significantly if unknown attacks are present in the test data; the unsupervised algorithms exhibit no significant difference in performance between known and unknown attacks but their performances are not that satisfying. In this contribution, we propose two semi-supervised classification methods, Spectral Graph Transducer and Gaussian Fields Approach, to detect unknown attacks and one semi-supervised clustering method-MPCK-means to improve the performances of the traditional purely unsupervised clustering methods. Our empirical study shows that performances of semi-supervised classification methods are much better than those of supervised classifiers, and semi-supervised clustering method can improve purely unsupervised clustering methods markedly.
引用
收藏
页码:2602 / +
页数:2
相关论文
共 50 条
  • [1] Semi-supervised machine learning framework for network intrusion detection
    Jieling Li
    Hao Zhang
    Yanhua Liu
    Zhihuang Liu
    [J]. The Journal of Supercomputing, 2022, 78 : 13122 - 13144
  • [2] Network Intrusion Detection Based on Active Semi-supervised Learning
    Zhang, Yong
    Niu, Jie
    He, Guojian
    Zhu, Lin
    Guo, Da
    [J]. 51ST ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN-W 2021), 2021, : 129 - 135
  • [3] Semi-supervised machine learning framework for network intrusion detection
    Li, Jieling
    Zhang, Hao
    Liu, Yanhua
    Liu, Zhihuang
    [J]. JOURNAL OF SUPERCOMPUTING, 2022, 78 (11): : 13122 - 13144
  • [4] A semi-supervised learning model for intrusion detection
    Jiang, Eric P.
    [J]. INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2019, 13 (03): : 343 - 353
  • [5] Effective Intrusion Detection System Using Semi-Supervised Learning
    Wagh, Sharmila Kishor
    Kolhe, Satish R.
    [J]. 2014 INTERNATIONAL CONFERENCE ON DATA MINING AND INTELLIGENT COMPUTING (ICDMIC), 2014,
  • [6] Intrusion detection for Softwarized Networks with Semi-supervised Federated Learning
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5244 - 5249
  • [7] A Misleading Attack against Semi-supervised Learning for Intrusion Detection
    Zhu, Fangzhou
    Long, Jun
    Zhao, Wentao
    Cai, Zhiping
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 287 - 298
  • [8] Semi-supervised learning methods for weed detection in turf
    Liu, Teng
    Zhai, Danlan
    He, Feiyu
    Yu, Jialin
    [J]. PEST MANAGEMENT SCIENCE, 2024, 80 (06) : 2552 - 2562
  • [9] Semi-supervised Few-shot Network Intrusion Detection based on Meta-learning
    Liu, Yao
    Zhou, Le
    Liu, Qiao
    Lan, Tian
    Bai, Xiaoyu
    Zhou, Tinghao
    [J]. 2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 495 - 502
  • [10] Semi-supervised tri-Adaboost algorithm for network intrusion detection
    Yuan, Yali
    Huo, Liuwei
    Yuan, Yachao
    Wang, Zhixiao
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2019, 15 (06):