EXPLICIT HERMITE-TYPE EIGENVECTORS OF THE DISCRETE FOURIER TRANSFORM

被引:14
|
作者
Kuznetsov, Alexey [1 ]
机构
[1] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
eigenvectors; discrete Fourier transform; orthogonal basis; Hermite functions; q-binomial theorem;
D O I
10.1137/15M1006428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The search for a canonical set of eigenvectors of the discrete Fourier transform has been ongoing for more than three decades. The goal is to find an orthogonal basis of eigenvectors which would approximate Hermite functions-the eigenfunctions of the continuous Fourier transform. This eigenbasis should also have some degree of analytical tractability and should allow for efficient numerical computations. In this paper we provide a solution to these problems. First, we construct an explicit basis of (nonorthogonal) eigenvectors of the discrete Fourier transform, thus extending the results of [F. N. Kong, IEEE Trans. Circuits Syst. II. Express Briefs, 55 (2008), pp. 56-60]. Applying the Gram-Schmidt orthogonalization procedure we obtain an orthogonal eigenbasis of the discrete Fourier transform. We prove that the first eight eigenvectors converge to the corresponding Hermite functions, and we conjecture that this convergence result remains true for all eigenvectors.
引用
收藏
页码:1443 / 1464
页数:22
相关论文
共 50 条
  • [1] Minimal Hermite-Type Eigenbasis of the Discrete Fourier Transform
    Alexey Kuznetsov
    Mateusz Kwaśnicki
    [J]. Journal of Fourier Analysis and Applications, 2019, 25 : 1053 - 1079
  • [2] Minimal Hermite-Type Eigenbasis of the Discrete Fourier Transform
    Kuznetsov, Alexey
    Kwasnicki, Mateusz
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2019, 25 (03) : 1053 - 1079
  • [3] On discrete Gauss-Hermite functions and eigenvectors of the discrete Fourier transform
    Santhanam, Balu
    Santhanam, Thalanayar S.
    [J]. SIGNAL PROCESSING, 2008, 88 (11) : 2738 - 2746
  • [5] Discrete Gauss-Hermite functions and eigenvectors of the centered discrete Fourier transform
    Santhanam, Balu
    Santhanam, Thalanayar S.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1385 - +
  • [6] Two dimensional discrete fractional Fourier transform based on the Hermite eigenvectors
    Yan, P.M.
    Liu, H.
    Chen, Y.J.
    [J]. Jisuanji Gongcheng/Computer Engineering, 2001, 27 (07):
  • [7] Explicit formulas for Hermite-type interpolation on the circle and applications
    Departamento de Matemática Aplicada I, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense
    32004, Spain
    不详
    36310, Spain
    [J]. Electron. Trans. Numer. Anal., (140-152): : 140 - 152
  • [8] EXPLICIT FORMULAS FOR HERMITE-TYPE INTERPOLATION ON THE CIRCLE AND APPLICATIONS
    Berriochoa, Elias
    Cachafeiro, Alicia
    Diaz, Jaime
    Illan, Jesus
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 140 - 152
  • [9] Eigenvectors of the Discrete Fourier Transform Based on the Bilinear Transform
    Ahmet Serbes
    Lutfiye Durak-Ata (EURASIP Member)
    [J]. EURASIP Journal on Advances in Signal Processing, 2010
  • [10] Eigenvectors of the Discrete Fourier Transform Based on the Bilinear Transform
    Serbes, Ahmet
    Durak-Ata, Lutfiye
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,