Soil Moisture Inversion Using AMSR-E Remote Sensing Data: An artificial neural network approach

被引:6
|
作者
Xie, Xingmei [1 ]
Xu, Jingwen [1 ]
Zhao, Junfang [2 ]
Liu, Shuang [1 ]
Wang, Peng [1 ]
机构
[1] Sichuan Agr Univ, Coll Resources & Environm, Chengdu 611130, Peoples R China
[2] Chinese Acad Sci, Chinese Acad Metrolog Sci, Beijing 100008, Peoples R China
关键词
Artificial neural network approach; soil moisture retrieval; AMSR-E;
D O I
10.4028/www.scientific.net/AMM.501-504.2073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this work artificial neural network with a back-propagation learning algorithm (BPNN) is employed to solve soil moisture retrieval for Sichuan Middle Hilly Area in China. Eighteen kinds of BPNN models have been developed using AMSR-E observations to retrieve soil moisture. The results show that the 18.7GHz band has some positive effect on improving soil moisture estimation accuracy while the 36.5GHz may interfere with deriving soil moisture, and vertical brightness temperature has a closer relationship with observed near-surface soil moisture than horizontal TB. The BPNN model driven by vertical and horizontal TB dataset at 6.9GHz and 10.7GHz frequency has the best performance of all the BPNN models withr value of 0.4968 and RMSE 10.2976%. Generally, the BPNN model is more suitable for soil moisture estimation than NASA product for the study area and can provide significant soil moisture information due to its ability of capturing non-linear and complex relationship.
引用
收藏
页码:2073 / +
页数:2
相关论文
共 50 条
  • [1] AMSR-E Soil Moisture Disaggregation Using MODIS and NLDAS Data
    Fang, Bin
    Lakshmi, Venkat
    [J]. REMOTE SENSING OF THE TERRESTRIAL WATER CYCLE, 2015, 206 : 277 - 304
  • [2] Impact of Rainfall on the Retrieval of Soil Moisture using AMSR-E data
    Jin, Kyoung-Wook
    Njoku, Eni
    Chan, Steven
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1740 - 1743
  • [3] Assessment of soil moisture through field measurements and AMSR-E remote sensing data analysis over Kuwait desert
    Al Jassar, Hala Khalid
    Rao, Kota Sivasankara
    [J]. KUWAIT JOURNAL OF SCIENCE, 2015, 42 (02) : 250 - 260
  • [4] Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E
    Du, Jinyang
    Kimball, John S.
    Jones, Lucas A.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 597 - 608
  • [5] A soil moisture retrieval method for AMSR-E
    Zhang, ZJ
    Shi, JC
    Zhu, Y
    [J]. IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 2803 - 2806
  • [6] Soil moisture retrieval from AMSR-E
    Njoku, EG
    Jackson, TJ
    Lakshmi, V
    Chan, TK
    Nghiem, SV
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02): : 215 - 229
  • [7] A comparison between two algorithms for the retrieval of soil moisture using AMSR-E data
    Paloscia, Simonetta
    Santi, Emanuele
    Pettinato, Simone
    Mladenova, Iliana
    Jackson, Thomas
    Bindlish, Rajat
    Cosh, Michael
    [J]. FRONTIERS IN EARTH SCIENCE, 2015, 3
  • [8] Long Term Global Surface Soil Moisture Fields Using an SMOS-Trained Neural Network Applied to AMSR-E Data
    Rodriguez-Fernandez, Nemesio J.
    Kerr, Yann H.
    van der Schalie, Robin
    Al-Yaari, Amen
    Wigneron, Jean-Pierre
    de Jeu, Richard
    Richaume, Philippe
    Dutra, Emanuel
    Mialon, Arnaud
    Drusch, Matthias
    [J]. REMOTE SENSING, 2016, 8 (11):
  • [9] Retrieval of Bare Surface Soil Moisture from AMSR-E Data
    Han, Nianlong
    Chen, Shengbo
    Wang, Zijun
    [J]. 2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 2, 2010, : 67 - 72
  • [10] Interpolation of Missing Values in AMSR-E Soil Moisture Data Using Modified SSA
    Turlapaty, Anish C.
    Younan, Nicolas H.
    Anantharaj, Valentine G.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (02) : 322 - 325