On a class of Newton-like methods for solving nonlinear equations

被引:29
|
作者
Argyros, Ioannis K. [1 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
关键词
Newton-like methods; Banach space; Frechet-derivative; Divided difference; Convergence domain; Newton's method; Secant method; Nonlinear integral equation of the Chandrasekhar type;
D O I
10.1016/j.cam.2008.08.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a semilocal convergence analysis for a certain class of Newton-like methods considered also in [I.K Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397; I.K. Argyros, Computational theory of iterative methods, in: C.K. Chui, L. Wuytack (Eds.), Series: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co, New York, USA, 2007; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rail (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971], in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions, instead of only Lipschitz conditions [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84], we provide an analysis with the following advantages over the work in [F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84] which improved the works in [W.E. Bosarge, P.L. Falb, A multipoint method of third order, J. Optimiz. Theory Appl. 4 (1969) 156-166; W.E. Bosarge, P.L. Falb, Infinite dimensional multipoint methods and the solution of two point boundary value problems, Numer. Math. 14 (1970) 264-286; J.E. Dennis, On the Kantorovich hypothesis for Newton's method, SIAM J. Numer. Anal. 6 (3) (1969) 493-507; J.E. Dennis, Toward a unified convergence theory for Newton-like methods, in: L.B. Rail (Ed.), Nonlinear Functional Analysis and Applications, Academic Press, New York, 1971; H.J. Kornstaedt, Ein allgemeiner Konvergenzstaz fu r verscha rfte Newton-Verfahrem, in: ISNM, vol. 28, Birkhau set Verlag, Basel and Stuttgart, 1975, pp. 53-69; P. Laasonen, Ein uberquadratisch konvergenter iterativer algorithmus, Ann. Acad. Sci. Fenn. Ser 1450 (1969) 1-10; F.A. Potra, On a modified secant method, L'analyse numerique et la theorie de I'approximation 8 (2) (1979) 203-214; F.A. Potra, An application of the induction method of V. Ptak to the study of Regula Falsi, Aplikace Matematiky 26 (1981) 111-120; F.A. Potra, On the convergence of a class of Newton-like methods, in: Iterative Solution of Nonlinear Systems of Equations, in: Lecture Notes in Mathematics, vol. 953, Springer-Verlag, New York, 1982; F.A. Potra, V. Ptak, Nondiscrete induction and double step secant method, Math. Scand. 46 (1980) 236-250; F.A. Potra, V. Ptak, On a class of modified Newton processes, Numer. Funct. Anal. Optim. 2 (1) (1980) 107-120; F.A. Potra, Sharp error bounds for a class of Newton-like methods, Libertas Math. 5 (1985) 71-84; J.W. Schmidt, Untere Fehlerschranken fur Regula-Falsi Verfahren, Period. Math. Hungar. 9 (3) (1978) 241-247; J.W. Schmidt, H. Schwetlick, Ableitungsfreie Verfhren mit hoherer Konvergenzgeschwindifkeit, Computing 3 (1968) 215-226; J.F. Traub, Iterative Methods for the Solution of Equations, Prentice Hall, Englewood Cliffs, New Jersey, 1964; M.A. Wolfe, Extended iterative methods for the solution of operator equations, Numer. Math. 31 (1978) 153-174]: larger convergence domain and weaker sufficient convergence conditions. Numerical examples further validating the results are also provided. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [1] On Newton-Like Methods for Solving Nonlinear Equations
    LIU Dingyou LI Yitian HE Julin KOU Jisheng
    Geo-spatial Information Science, 2006, (01) : 76 - 78
  • [2] On Newton-Like Methods for Solving Nonlinear Equations
    Kou Jisheng
    Liu Dingyou
    Li Yitian
    He Julin
    GEO-SPATIAL INFORMATION SCIENCE, 2006, 9 (01) : 76 - 78
  • [3] Construction of Newton-like iteration methods for solving nonlinear equations
    Changbum Chun
    Numerische Mathematik, 2006, 104 : 297 - 315
  • [4] CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS
    BUS, JCP
    NUMERISCHE MATHEMATIK, 1977, 27 (03) : 271 - 281
  • [5] Construction of Newton-like iteration methods for solving nonlinear equations
    Chun, Changbum
    NUMERISCHE MATHEMATIK, 2006, 104 (03) : 297 - 315
  • [6] Improved Newton-like methods for solving systems of nonlinear equations
    Sharma J.R.
    Arora H.
    SeMA Journal, 2017, 74 (2) : 147 - 163
  • [7] A CLASS OF NEWTON-LIKE METHODS WITH CUBIC CONVERGENCE FOR NONLINEAR EQUATIONS
    Ye, Qiaojun
    Xu, Xiubin
    FIXED POINT THEORY, 2010, 11 (01): : 161 - 168
  • [8] NEWTON-LIKE METHODS FOR SOLVING UNDERDETERMINED NONLINEAR EQUATIONS WITH NONDIFFERENTIABLE TERMS
    CHEN, XJ
    YAMAMOTO, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 55 (03) : 311 - 324
  • [9] STUDY OF LOCAL CONVERGENCE OF NEWTON-LIKE METHODS FOR SOLVING NONLINEAR EQUATIONS
    Kumar, Deepak
    Sharma, Janak Raj
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 18 (01): : 127 - 140
  • [10] A new Newton-like method for solving nonlinear equations
    Saheya, B.
    Chen, Guo-qing
    Sui, Yun-kang
    Wu, Cai-ying
    SPRINGERPLUS, 2016, 5