EQUILATERAL DIMENSION OF CERTAIN CLASSES OF NORMED SPACES

被引:3
|
作者
Kobos, Tomasz [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, PL-30348 Krakow, Poland
关键词
Brouwer fixed point theorem; Equilateral dimension; Equidistant points; Equilateral set; Orlicz space; Symmetric norm; Touching translates; MINKOWSKI;
D O I
10.1080/01630563.2014.930482
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equilateral dimension of a normed space is the maximal number of pairwise equidistant points of this space. The aim of this article is to study the equilateral dimension of certain classes of finite-dimensional normed spaces. A well-known conjecture states that the equilateral dimension of any n-dimensional normed space is not less than n + 1. By using an elementary continuity argument, we establish it in the following classes of spaces: permutation-invariant spaces, Musielak-Orlicz spaces, and one codimensional subspaces of l(infinity)(n). For smooth and symmetric spaces, Musielak-Orlicz spaces satisfying an additional condition and every (n - 1)-dimensional subspace of l(infinity)(n) we also provide some weaker bounds on the equilateral dimension for every space that is sufficiently close to one of these. This generalizes a result of Swanepoel and Villa concerning the l(p)(n) spaces.
引用
收藏
页码:1340 / 1358
页数:19
相关论文
共 50 条
  • [1] ON CERTAIN CLASSES OF NORMED LINEAR-SPACES
    GODINI, G
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1984, 29 (08): : 695 - 701
  • [2] SETS OF BEST APPROXIMATION IN CERTAIN CLASSES OF NORMED SPACES
    CHALMERS, BL
    FERGUSON, LO
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 169 - &
  • [3] On mappings preserving equilateral triangles in normed spaces
    Sikorska, Justyna
    Szostok, Tomasz
    [J]. JOURNAL OF GEOMETRY, 2006, 85 (1-2) : 149 - 156
  • [4] A lower bound for the equilateral number of normed spaces
    Swanepoel, Konrad J.
    Villa-Caro, Rafael
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) : 127 - 131
  • [5] Residuality Properties of Certain Classes of Convex Functions on Normed Linear Spaces
    Barshad, Kay
    Reich, Simeon
    Zaslavski, Alexander J.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2022, 29 (03) : 795 - 806
  • [6] On large equilateral point-sets in normed spaces
    Bernardo González Merino
    [J]. Archiv der Mathematik, 2020, 114 : 553 - 559
  • [7] On large equilateral point-sets in normed spaces
    Gonzalez Merino, Bernardo
    [J]. ARCHIV DER MATHEMATIK, 2020, 114 (05) : 553 - 559
  • [8] CHARACTERIZATION OF CERTAIN NORMED VECTOR-SPACES OF FINITE DIMENSION BY THEIR MACPHAIL CONSTANT
    DESCHASEAUX, JP
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (20): : 1349 - 1351
  • [9] On Certain Approximation Problem in Normed Spaces
    Witula, R.
    Hetmaniok, E.
    Kaczmarek, K.
    Slota, D.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS '14), 2014, 1629 : 368 - 372
  • [10] ON THE MIDDLE DIMENSIONAL HOMOLOGY CLASSES OF EQUILATERAL POLYGON SPACES
    Kamiyama, Yasuhiko
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2015, 17 (02) : 1 - 12