Creep compliance mapping by atomic force microscopy

被引:30
|
作者
Braunsmann, Christoph [1 ,2 ]
Proksch, Roger [3 ]
Revenko, Irene [3 ]
Schaeffer, Tilman E. [1 ,2 ]
机构
[1] Univ Tubingen, Inst Appl Phys, D-72076 Tubingen, Germany
[2] Univ Tubingen, LISA, D-72076 Tubingen, Germany
[3] Asylum Res, Oxford Instruments Co, Santa Barbara, CA 93117 USA
关键词
Nanoindentation; Viscoelasticity; Double step loading; VISCOELASTIC PROPERTIES; NANOINDENTATION; POLYMERS; INDENTATION;
D O I
10.1016/j.polymer.2013.11.029
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We present a method for mapping the spatial distribution of viscoelastic properties of heterogeneous samples using the atomic force microscope (AFM). By applying a force step load protocol to induce time dependent sample indentations we measured the local creep compliance of the sample. The creep compliance was quantified in terms of the standard linear solid model to give maps of the instant glassy modulus, the equilibrium rubbery modulus, and the retardation time. To reduce the influence of plastic deformations, the sample was preformed with an initial preload step. Different polymer samples with a homogeneous or a heterogeneous material composition on a microscopic scale were investigated. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:219 / 225
页数:7
相关论文
共 50 条
  • [1] Force sensing and mapping by atomic force microscopy
    Green, NH
    Allen, S
    Davies, MC
    Roberts, CJ
    Tendler, SJB
    Williams, PM
    [J]. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2002, 21 (01) : 64 - 73
  • [2] Quantification of Creep Damage by Atomic Force Microscopy
    Suraya, M. N.
    Astuty, A.
    Badrol, A.
    Roslina, M.
    [J]. ADVANCES IN MATERIAL & PROCESSING TECHNOLOGIES CONFERENCE, 2017, 184 : 390 - 398
  • [3] Nanorheology mapping by atomic force microscopy
    Nakajima, K
    Fujinami, S
    Nukaga, H
    Wataba, H
    Kitano, H
    Ono, N
    Endoh, K
    Kaneko, M
    Nishi, T
    [J]. KOBUNSHI RONBUNSHU, 2005, 62 (10) : 476 - 487
  • [4] Tip Trajectory Mapping in Atomic Force Microscopy
    Sigdel, Krishna P.
    Grayer, Justin S.
    King, Gavin M.
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 512A - 512A
  • [5] Nanorheological Mapping of Rubbers by Atomic Force Microscopy
    Igarashi, Takaaki
    Fujinami, So
    Nishi, Toshio
    Asao, Naoki
    Nakajima, Ken
    [J]. MACROMOLECULES, 2013, 46 (05) : 1916 - 1922
  • [6] Force and compliance measurements on living cells using atomic force microscopy (AFM)
    Wojcikiewicz E.P.
    Zhang X.
    Moy V.T.
    [J]. Biological Procedures Online, 2004, 6 (1) : 1 - 9
  • [7] Compliance profile of the human cornea as measured by atomic force microscopy
    Last, Julie A.
    Thomasy, Sara M.
    Croasdale, Christopher R.
    Russell, Paul
    Murphy, Christopher J.
    [J]. MICRON, 2012, 43 (12) : 1293 - 1298
  • [8] Compliance measurements of confined polystyrene solutions by atomic force microscopy
    Overney, RM
    Leta, DP
    Pictroski, CF
    Rafailovich, MH
    Liu, Y
    Quinn, J
    Sokolov, J
    Eisenberg, A
    Overney, G
    [J]. PHYSICAL REVIEW LETTERS, 1996, 76 (08) : 1272 - 1275
  • [9] "May the Force Be with You!" Force-Volume Mapping with Atomic Force Microscopy
    Olubowale, Olajumoke H.
    Biswas, Shanta
    Azom, Golam
    Prather, Benjamin L.
    Owoso, Samuel D.
    Rinee, Khaleda C.
    Marroquin, Karen
    Gates, Kaelin A.
    Chambers, Matthew B.
    Xu, Amy
    Garno, Jayne C.
    [J]. ACS OMEGA, 2021, 6 (40): : 25860 - 25875
  • [10] Oscillatory Microrheology, Creep Compliance and Stress Relaxation of Biological Cells Reveal Strong Correlations as Probed by Atomic Force Microscopy
    Flormann, D. A. D.
    Anton, C.
    Pohland, M. O.
    Bautz, Y.
    Kaub, K.
    Terriac, E.
    Schaeffer, T. E.
    Rheinlaender, J.
    Janshoff, A.
    Ott, A.
    Lautenschlaeger, F.
    [J]. FRONTIERS IN PHYSICS, 2021, 9