Reduced models for the finite element formulation of the Biot's poroelasticity equations in low-frequency range: modal synthesis method

被引:0
|
作者
Penning, P. [1 ]
Kehr-Candille, V. [1 ]
Ohayon, R. [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, Struct Dynam & Coupled Syst Dept, F-92322 Chatillon, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we present a ((u) under bar (s), phi) formulation derived from the mixed formulation ((u) under bar (S), p). A modal approach derived from the theory of complex modes is used to efficiently solve the poroelastic complex and non-linear frequency dependent eigenvalue problem. This technique exhibits coupled and damped modes with restrictive structural damping form.
引用
收藏
页码:3907 / 3921
页数:15
相关论文
共 44 条
  • [1] Finite Element Solvers for Biot's Poroelasticity Equations in Porous Media
    Kadeethum, T.
    Lee, S.
    Nick, H. M.
    [J]. MATHEMATICAL GEOSCIENCES, 2020, 52 (08) : 977 - 1015
  • [2] Finite Element Solvers for Biot’s Poroelasticity Equations in Porous Media
    T. Kadeethum
    S. Lee
    H. M. Nick
    [J]. Mathematical Geosciences, 2020, 52 : 977 - 1015
  • [3] Correction to: Finite Element Solvers for Biot’s Poroelasticity Equations in Porous Media
    T. Kadeethum
    S. Lee
    H. M. Nick
    [J]. Mathematical Geosciences, 2021, 53 : 1095 - 1095
  • [4] A nonconforming finite element method for the Biot's consolidation model in poroelasticity
    Hu, Xiaozhe
    Rodrigo, Carmen
    Gaspar, Francisco J.
    Zikatanov, Ludmil T.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 310 : 143 - 154
  • [5] A Low-Frequency Stable Finite-Element Formulation for Modal Waveguide Analysis
    Baltes, Rolf
    Farle, Ortwin
    Dyczij-Edlinger, Romanus
    Al Ahmar, Joseph
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS (ICCEM), 2015, : 344 - 346
  • [6] A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations
    Bermúdez, A
    Rodríguez, R
    Salgado, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) : 1823 - 1849
  • [7] Comparison of the low-frequency predicitons of Biot's and de Boer's poroelasticity theories with Gassmann's equation
    Gurevich, Boris
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (09)
  • [8] Finite Element Solvers for Biot's Poroelasticity Equations in Porous Media (vol 52, pg 977, 2020)
    Kadeethum, T.
    Lee, S.
    Nick, H. M.
    [J]. MATHEMATICAL GEOSCIENCES, 2021, 53 (05) : 1095 - 1095
  • [9] Broadband and Sparse Finite-Element Formulation Free of Low-Frequency Breakdown
    Xue, Li
    Jiao, Dan
    [J]. 2018 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, 2018, : 1317 - 1318
  • [10] Reduced-order nonlinear modal equations of plates based on the finite element method
    Harada, A
    Kobayashi, Y
    Yamada, G
    [J]. JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2002, 45 (01) : 79 - 86