Spatial structure, parameter nonlinearity, and intelligent algorithms in constructing pedotransfer functions from large-scale soil legacy data

被引:6
|
作者
Chakraborty, Poulamee [1 ]
Das, Bhabani S. [1 ]
Vasaya, Hitesh B. [1 ]
Panigrahi, Niranjan [1 ]
Santra, Priyabrata [2 ]
机构
[1] Indian Inst Technol Kharagpur, Agr & Food Engn Dept, Kharagpur 721302, W Bengal, India
[2] ICAR Cent Arid Zone Res Inst, Div Nat Resources, Jodhpur 342003, Rajasthan, India
关键词
SPECTRAL REFLECTANCE; HYDRAULIC-PROPERTIES; BULK-DENSITY; CARBON;
D O I
10.1038/s41598-020-72018-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pedotransfer function (PTF) approach is a convenient way for estimating difficult-to-measure soil properties from basic soil data. Typically, PTFs are developed using a large number of samples collected from small (regional) areas for training and testing a predictive model. National soil legacy databases offer an opportunity to provide soil data for developing PTFs although legacy data are sparsely distributed covering large areas. Here, we examined the Indian soil legacy (ISL) database to select a comprehensive training dataset for estimating cation exchange capacity (CEC) as a test case in the PTF approach. Geostatistical and correlation analyses showed that legacy data entail diverse spatial and correlation structure needed in building robust PTFs. Through non-linear correlation measures and intelligent predictive algorithms, we developed a methodology to extract an efficient training dataset from the ISL data for estimating CEC with high prediction accuracy. The selected training data had comparable spatial variation and nonlinearity in parameters for training and test datasets. Thus, we identified specific indicators for constructing robust PTFs from legacy data. Our results open a new avenue to use large volume of existing soil legacy data for developing region-specific PTFs without the need for collecting new soil data.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spatial structure, parameter nonlinearity, and intelligent algorithms in constructing pedotransfer functions from large-scale soil legacy data
    Poulamee Chakraborty
    Bhabani S. Das
    Hitesh B. Vasava
    Niranjan Panigrahi
    Priyabrata Santra
    Scientific Reports, 10
  • [2] Large-scale mapping of soil particle size distribution using legacy data and machine learning-based pedotransfer functions
    Kassai, Piroska
    Kocsis, Mihaly
    Szatmari, Gabor
    Mako, Andras
    Meszaros, Janos
    Laborczi, Annamaria
    Magyar, Zoltan
    Takacs, Katalin
    Pasztor, Laszlo
    Szabo, Brigitta
    GEODERMA, 2025, 454
  • [3] Scalable Algorithms for Bayesian Inference of Large-Scale Models from Large-Scale Data
    Ghattas, Omar
    Isaac, Tobin
    Petra, Noemi
    Stadler, Georg
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2016, 2017, 10150 : 3 - 6
  • [4] Uncertainty analysis for large-scale prediction of the van Genuchten soil-water retention parameters with pedotransfer functions
    Liao, K.
    Xu, S.
    Wu, J.
    Zhu, Q.
    SOIL RESEARCH, 2014, 52 (05) : 431 - 442
  • [5] Research of Large-Scale and Complex Agricultural Data Classification Algorithms Based on the Spatial Variability
    Chen, Hang
    Chen, Guifen
    Cai, Lixia
    Yang, Yuqin
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IX, CCTA 2015, PT I, 2016, 478 : 45 - 52
  • [6] Cosmological parameter estimation from large-scale structure deep learning
    ShuYang Pan
    MiaoXin Liu
    Jaime Forero-Romero
    Cristiano G. Sabiu
    ZhiGang Li
    HaiTao Miao
    Xiao-Dong Li
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [7] Cosmological parameter estimation from large-scale structure deep learning
    ShuYang Pan
    MiaoXin Liu
    Jaime Forero-Romero
    Cristiano G.Sabiu
    ZhiGang Li
    HaiTao Miao
    Xiao-Dong Li
    Science China(Physics,Mechanics & Astronomy), 2020, Mechanics & Astronomy)2020 (11) : 40 - 54
  • [8] Cosmological parameter estimation from large-scale structure deep learning
    Pan, ShuYang
    Liu, MiaoXin
    Forero-Romero, Jaime
    Sabiu, Cristiano G.
    Li, ZhiGang
    Miao, HaiTao
    Li, Xiao-Dong
    Science China: Physics, Mechanics and Astronomy, 2020, 63 (11):
  • [9] Cosmological parameter estimation from large-scale structure deep learning
    Pan, ShuYang
    Liu, MiaoXin
    Forero-Romero, Jaime
    Sabiu, Cristiano G.
    Li, ZhiGang
    Miao, HaiTao
    Li, Xiao-Dong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (11)
  • [10] Constructing a hybrid species distribution model from standard large-scale distribution data
    Singer, Alexander
    Schweiger, Oliver
    Kuehn, Ingolf
    Johst, Karin
    ECOLOGICAL MODELLING, 2018, 373 : 39 - 52