Distribution of time to buffer overflow in a finite-buffer manufacturing model with unreliable machine

被引:1
|
作者
Kempa, Wojciech M. [1 ]
Paprocka, Iwona [2 ]
Grabowik, Cezary [2 ]
Kalinowski, Krzysztof [2 ]
Krenczyk, Damian [2 ]
机构
[1] Silesian Tech Univ, Fac Appl Math, Inst Math, 23 Kaszubska Str, PL-44100 Gliwice, Poland
[2] Silesian Tech Univ, Fac Mech Engn, Inst Engn Proc Automat & Integrated Mfg Syst, 18A Konarskiego Str, PL-44100 Gliwice, Poland
关键词
QUEUING THEORY;
D O I
10.1051/matecconf/201711205005
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the most important characteristic of each queueing model is time to buffer overflow. In the paper the distribution of that time in a single-channel manufacturing system, modelled by a Markovian finite-buffer queue with machine breakdowns, is studied. By using the analytical approach based on the idea of embedded Markov chain, total probability law and linear algebra, the formula for Laplace transform of the time to buffer overflow conditional distribution is found. Numerical illustration is presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Optimal safety stock for unreliable, finite buffer, single machine manufacturing systems
    Giordano, M
    Martinelli, F
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2002, : 2339 - 2344
  • [2] On Time-to-Buffer Overflow Distribution in a Single-Machine Discrete-Time System with Finite Capacity
    Kempa, Wojciech M.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (02) : 289 - 302
  • [3] Time-Dependent Queue-Size Distribution in a Finite-Buffer Model with Server Setup Times
    Kempa, Wojciech M.
    Kurzyk, Dariusz
    [J]. PROCEEDINGS OF THE 2016 FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS (FEDCSIS), 2016, 8 : 1015 - 1019
  • [4] Modeling of finite buffer cellular manufacturing systems with unreliable machines
    Gupta, SM
    Kavusturucu, A
    [J]. INTERNATIONAL JOURNAL OF INDUSTRIAL ENGINEERING-THEORY APPLICATIONS AND PRACTICE, 1998, 5 (04): : 265 - 277
  • [5] Queueing Delay in a Finite-Buffer Model with Failures and Bernoulli Feedback
    Kempa, Wojciech M.
    [J]. INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, PT II, 2018, 656 : 229 - 238
  • [6] The waiting time distribution for a TDMA model with a finite buffer
    Neuts, MF
    Guo, J
    Zukerman, M
    Le Vu, H
    [J]. IEEE INFOCOM 2003: THE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-3, PROCEEDINGS, 2003, : 177 - 185
  • [7] Throughput and Latency in Finite-Buffer Line Networks
    Vellambi, Badri N.
    Torabkhani, Nima
    Fekri, Faramarz
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) : 3622 - 3643
  • [8] Finite-Buffer M/G/1 Queues with Time and Space Priorities
    Kim, Kilhwan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [9] On a Critical Regime for Linear Finite-Buffer Networks
    Choi, Yoojin
    Momcilovic, Petar
    [J]. 2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 730 - 737
  • [10] Queue and Loss Distributions in Finite-Buffer Queues
    Ciucu, Florin
    Poloczek, Felix
    Rizk, Amr
    [J]. Performance Evaluation Review, 2019, 47 (01): : 65 - 66