Power and sample size estimation in high dimensional biology

被引:47
|
作者
Gadbury, GL
Page, GP
Edwards, J
Kayo, T
Prolla, TA
Weindruch, R
Permana, PA
Mountz, JD
Allison, DB
机构
[1] Univ Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USA
[2] Univ Missouri, Dept Math & Stat, Rolla, MO 65401 USA
[3] Iowa State Univ, USDA ARS, Dept Agron, Ames, IA USA
[4] Univ Wisconsin, Wisconsin Reg Primate Res Ctr, Madison, WI USA
[5] Univ Wisconsin, Dept Genet & Med Genet, Madison, WI USA
[6] Univ Wisconsin, Dept Med, Madison, WI USA
[7] William S Middleton VA Hosp, Ctr Geriatr Res Educ & Clin, Madison, WI USA
[8] NIDDKD, Phoenix Epidemiol & Clin Res Branch, NIH, Phoenix, AZ USA
[9] Univ Alabama Birmingham, Birmingham Vet Adm Med Ctr, Birmingham, AL USA
[10] Univ Alabama Birmingham, Clin Nutr Res Ctr, Birmingham, AL 35294 USA
关键词
D O I
10.1191/0962280204sm369ra
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Genomic scientists often test thousands of hypotheses in a single experiment. One example is a microarray experiment that seeks to determine differential gene expression among experimental groups. Planning such experiments involves a determination of sample size that will allow meaningful interpretations. Traditional power analysis methods may not be well suited to this task when thousands of hypotheses are tested in a discovery oriented basic research. We introduce the concept of expected discovery rate (EDR) and an approach that combines parametric mixture modelling with parametric bootstrapping to estimate the sample size needed for a desired accuracy of results. While the examples included are derived from microarray studies, the methods, herein, are 'extraparadigmatic' in the approach to study design and are applicable to most high dimensional biological situations. Pilot data from three different microarray experiments are used to extrapolate EDR as well as the related false discovery rate at different sample sizes and thresholds.
引用
收藏
页码:325 / 338
页数:14
相关论文
共 50 条
  • [1] An introduction to power and sample size estimation
    Jones, SR
    Carley, S
    Harrison, M
    [J]. EMERGENCY MEDICINE JOURNAL, 2003, 20 (05) : 453 - 458
  • [2] Sample size determination for high dimensional parameter estimation with application to biomarker identification
    Jiang, Binyan
    Li, Jialiang
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 118 : 54 - 65
  • [3] Power and sample size estimation in microarray studies
    Lin, Wei-Jiun
    Hsueh, Huey-Miin
    Chen, James J.
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [4] Power and sample size estimation in microarray studies
    Wei-Jiun Lin
    Huey-Miin Hsueh
    James J Chen
    [J]. BMC Bioinformatics, 11
  • [5] General power and sample size calculations for high-dimensional genomic data
    van Iterson, Maarten
    van de Wiel, Mark A.
    Boer, Judith M.
    de Menezes, Renee X.
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (04) : 449 - 467
  • [6] AN AVERAGE POWER CRITERION FOR SAMPLE-SIZE ESTIMATION
    GILLETT, R
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1994, 43 (03) : 389 - 394
  • [7] Power and Sample Size Estimation for the Clustered Wilcoxon Test
    Rosner, Bernard
    Glynn, Robert J.
    [J]. BIOMETRICS, 2011, 67 (02) : 646 - 653
  • [8] Sample size estimation for power and accuracy in the experimental comparison of algorithms
    Campelo, Felipe
    Takahashi, Fernanda
    [J]. JOURNAL OF HEURISTICS, 2019, 25 (02) : 305 - 338
  • [9] Sample size planning for statistical power and accuracy in parameter estimation
    Maxwell, Scott E.
    Kelley, Ken
    Rausch, Joseph R.
    [J]. ANNUAL REVIEW OF PSYCHOLOGY, 2008, 59 : 537 - 563
  • [10] Sample size estimation for power and accuracy in the experimental comparison of algorithms
    Felipe Campelo
    Fernanda Takahashi
    [J]. Journal of Heuristics, 2019, 25 : 305 - 338