Smoothed Aggregation Multigrid for Cloth Simulation

被引:62
|
作者
Tamstorf, Rasmus [1 ]
Jones, Toby [1 ]
McCormick, Stephen E. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 06期
关键词
cloth simulation; smoothed aggregation; algebraic multigrid; equality constrained optimization; ROBUST TREATMENT; CONTACT;
D O I
10.1145/2816795.2818081
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Existing multigrid methods for cloth simulation are based on geometric multigrid. While good results have been reported, geometric methods are problematic for unstructured grids, widely varying material properties, and varying anisotropies, and they often have difficulty handling constraints arising from collisions. This paper applies the algebraic multigrid method known as smoothed aggregation to cloth simulation. This method is agnostic to the underlying tessellation, which can even vary over time, and it only requires the user to provide a fine-level mesh. To handle contact constraints efficiently, a prefiltered preconditioned conjugate gradient method is introduced. For highly efficient preconditioners, like the ones proposed here, prefiltering is essential, but, even for simple preconditioners, prefiltering provides significant benefits in the presence of many constraints. Numerical tests of the new approach on a range of examples confirm 6 - 8 x speedups on a fully dressed character with 371k vertices, and even larger speedups on synthetic examples.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] SMOOTHED AGGREGATION MULTIGRID FOR MARKOV CHAINS
    De Sterck, H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Miller, K.
    Pearson, J.
    Ruge, J.
    Sanders, G.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 40 - 61
  • [2] Adaptive smoothed aggregation (αSA) multigrid
    Brezina, M
    Falgout, R
    MacLachlan, S
    Manteuffel, T
    McCormick, S
    Ruge, J
    SIAM REVIEW, 2005, 47 (02) : 317 - 346
  • [3] Smoothed aggregation multigrid for a Stokes problem
    Janka, Ales
    COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (03) : 169 - 180
  • [4] Convergence of algebraic multigrid based on smoothed aggregation
    Vanek, P
    Brezina, M
    Mandel, J
    NUMERISCHE MATHEMATIK, 2001, 88 (03) : 559 - 579
  • [5] Convergence of algebraic multigrid based on smoothed aggregation
    Vaněk P.
    Brezina M.
    Mandel J.
    Numerische Mathematik, 2001, 88 (3) : 559 - 579
  • [6] SMOOTHED AGGREGATION MULTIGRID FOR THE DISCONTINUOUS GALERKIN METHOD
    Prill, F.
    Lukacova-Medvidova, M.
    Hartmann, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3503 - 3528
  • [7] Parallel Multigrid for Nonlinear Cloth Simulation
    Wang, Zhendong
    Wu, Longhua
    Fratarcangeli, Marco
    Tang, Min
    Wang, Huamin
    COMPUTER GRAPHICS FORUM, 2018, 37 (07) : 131 - 141
  • [8] A new smoothed aggregation multigrid method for anisotropic problems
    Gee, Michael W.
    Hu, Jonathan J.
    Tuminaro, Raymond S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (01) : 19 - 37
  • [9] An improved convergence analysis of smoothed aggregation algebraic multigrid
    Brezina, Marian
    Vanek, Petr
    Vassilevski, Panayot S.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (03) : 441 - 469
  • [10] A generalized eigensolver based on smoothed aggregation (GES-SA) for initializing smoothed aggregation (SA) multigrid
    Brezina, M.
    Manteuffel, T.
    McCormick, S.
    Ruge, J.
    Sanders, G.
    Vassilevski, P.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2008, 15 (2-3) : 249 - 269