Time domain decomposition in final value optimal control of the Maxwell system

被引:4
|
作者
Lagnese, JE [1 ]
Leugering, G
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
Maxwell system; optimal control; domain decomposition;
D O I
10.1051/cocv:2002042
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a boundary optimal control problem for the Maxwell system with a final value cost criterion. We introduce a time domain decomposition procedure for the corresponding optimality system which leads to a sequence of uncoupled optimality systems of local-in-time optimal control problems. In the limit full recovery of the coupling conditions is achieved, and, hence, the local solutions and controls converge to the global ones. The process is inherently parallel and is suitable for real-time control applications.
引用
收藏
页码:775 / 799
页数:25
相关论文
共 50 条
  • [1] A nonoverlapping domain decomposition for optimal boundary control of the dynamic Maxwell system
    Lagnese, JE
    [J]. CONTROL OF NONLINEAR DISTRIBUTED PARAMETER SYSTEMS, 2001, 218 : 157 - 176
  • [3] A posteriori error estimates in time-domain decomposition of final value optimal control of the acoustic wave equation
    Lagnese, JE
    Leugering, G
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3): : 263 - 290
  • [4] On the Time-Domain Decomposition of Parabolic Optimal Control Problems
    Kwok, Felix
    [J]. DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXIII, 2017, 116 : 55 - 67
  • [5] An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations
    Alonso, A
    Valli, A
    [J]. MATHEMATICS OF COMPUTATION, 1999, 68 (226) : 607 - 631
  • [6] A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations
    El Bouajaji, M.
    Thierry, B.
    Antoine, X.
    Geuzaine, C.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 38 - 57
  • [7] Time-domain decomposition of optimal control problems for the wave equation
    Lagnese, JE
    Leugering, G
    [J]. SYSTEMS & CONTROL LETTERS, 2003, 48 (3-4) : 229 - 242
  • [8] Domain Decomposition for Stochastic Optimal Control
    Horowitz, Matanya B.
    Papusha, Ivan
    Burdick, Joel W.
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 1866 - 1873
  • [9] Decomposition methods for time-domain Maxwell's equations
    Huang, Zhi-Xiang
    Sha, Wei E. I.
    Wu, Xian-Liang
    Chen, Ming-Sheng
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 56 (09) : 1695 - 1704
  • [10] Parallel solution of optimal-control problems by time-domain decomposition
    Berggren, M
    Heinkenschloss, M
    [J]. COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 102 - 112