LOWER BOUNDS ON THE NORMS OF EXTENSION OPERATORS FOR LIPSCHITZ DOMAINS

被引:2
|
作者
Lotoreichik, Vladimir [1 ]
机构
[1] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
来源
OPERATORS AND MATRICES | 2014年 / 8卷 / 02期
基金
奥地利科学基金会;
关键词
Extension operator; Lipschitz domain; Robin Laplacian; Schrodinger operator with delta-potential; norm estimates; SCHRODINGER-OPERATORS; SOBOLEV SPACES; EIGENVALUE; TRACE;
D O I
10.7153/oam-08-30
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega subset of R-d. Rd be a bounded or an unbounded Lipschitz domain. In this note we address the problem of continuation of functions from the Sobolev space H-1(Omega) up to functions in the Sobolev space H-1(R-d) via a linear operator. The minimal possible norm of such an operator is estimated from below in terms of spectral properties of self-adjoint Robin Laplacians on domains Omega and R-d \ (Omega) over bar. Another estimate of this norm is also given, where spectral properties of Schrodinger operators with the delta-interaction supported on the hypersurface. partial derivative Omega are involved. General results are illustrated with examples.
引用
收藏
页码:573 / 592
页数:20
相关论文
共 50 条