Three-dimensional conformally symmetric manifolds

被引:6
|
作者
Calvino-Louzao, E. [1 ]
Garcia-Rio, E. [1 ]
Seoane-Bascoy, J. [1 ]
Vazquez-Lorenzo, R. [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
关键词
Cotton tensor; Conformally symmetric spaces; LORENTZIAN MANIFOLDS; RICCI SOLITONS;
D O I
10.1007/s10231-013-0349-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonexistence of nontrivial conformally symmetric manifolds in the three-dimensional Riemannian setting is shown. In Lorentzian signature, a complete local classification is obtained. Furthermore, the isometry classes are examined.
引用
收藏
页码:1661 / 1670
页数:10
相关论文
共 50 条
  • [1] Three-dimensional conformally symmetric manifolds
    E. Calviño-Louzao
    E. García-Río
    J. Seoane-Bascoy
    R. Vázquez-Lorenzo
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1661 - 1670
  • [2] Three-dimensional conformally flat homogeneous Lorentzian manifolds
    Honda, Kyoko
    Tsukada, Kazumi
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (04) : 831 - 851
  • [3] Three-dimensional locally symmetric almost Kenmotsu manifolds
    Wang, Yaning
    [J]. ANNALES POLONICI MATHEMATICI, 2016, 116 (01) : 79 - 86
  • [4] CLASSIFICATION OF THREE-DIMENSIONAL CONFORMALLY FLAT QUASI-PARA-SASAKIAN MANIFOLDS
    Erken, Irem Kupeli
    [J]. HONAM MATHEMATICAL JOURNAL, 2019, 41 (03): : 489 - 503
  • [5] Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds
    Mantica, Carlo Alberto
    Suh, Young Jin
    [J]. BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 66 - 77
  • [6] THREE-DIMENSIONAL SEMI-SYMMETRIC HOMOGENEOUS LORENTZIAN MANIFOLDS
    Calvaruso, G.
    [J]. ACTA MATHEMATICA HUNGARICA, 2008, 121 (1-2) : 157 - 170
  • [7] Three-Dimensional Semi-Symmetric Almost α-Cosymplectic Manifolds
    Ozturk, Sermin
    Ozturk, Hakan
    [J]. SYMMETRY-BASEL, 2023, 15 (11):
  • [8] Three-dimensional semi-symmetric homogeneous Lorentzian manifolds
    G. Calvaruso
    [J]. Acta Mathematica Hungarica, 2008, 121 : 157 - 170
  • [9] ON WEAKLY CONFORMALLY SYMMETRIC MANIFOLDS
    Shaikh, A. A.
    Shahid, M. Hasan
    Hui, Shyamal Kumar
    [J]. MATEMATICKI VESNIK, 2008, 60 (04): : 269 - 284
  • [10] WEAKLY CONFORMALLY SYMMETRIC MANIFOLDS
    Mantica, Carlo Alberto
    Suh, Young Jin
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 150 (01) : 21 - 38