Application of advanced master curve approaches on WWER-440 reactor pressure vessel steels

被引:24
|
作者
Viehrig, Hans-Werner [1 ]
Scibetta, Marc [1 ]
Wallin, Kim [1 ]
机构
[1] CEN SCK, Reactor Mat Res, B-2400 Mol, Belgium
关键词
reactor pressure vessel steel; fracture toughness; master curve approach; inhomogeneous material; random inhomogeneity; maximum likelihood procedure; SINTAP procedure;
D O I
10.1016/j.ijpvp.2006.04.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The master curve (MC) approach used to measure the transition temperature, T-0, was standarised in the ASTM Standard Test Method E 1921 in 1997. The basic MC approach for analysis of fracture test results is intended for macroscopically homogeneous steels with a body centred cubic (ferritic) structure only. In reality, due to the manufacturing process, the steels in question are seldom fully macroscopically homogeneous. The fracture toughness values measured on Charpy size SE(B) specimens of base metal from the Greifswald Unit 8 rector pressure vessel (RPV) show large scatter. The basic MC evaluation following ASTM E1921 supplies a MC with many fracture toughness values which lie below the 5% fracture probability line. It is therefore suspected that this material is macroscopically inhomogeneous. In this paper, two recent extensions of the MC for inhomogeneous materials are applied to these fracture toughness data. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:584 / 592
页数:9
相关论文
共 50 条
  • [1] Flux effect analysis in WWER-440 reactor pressure vessel steels
    Kryukov, A.
    Blagoeva, D.
    Debarberis, L.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 443 (1-3) : 171 - 175
  • [2] Impact of shield elements on the WWER-440 reactor pressure vessel activation
    Narkunas, Ernestas
    Poskas, Gintautas
    Smaizys, Arturas
    ANNALS OF NUCLEAR ENERGY, 2019, 130 : 394 - 401
  • [3] Prediction of irradiation embrittlement in WWER-440 reactor pressure vessel materials
    Brumovsky, M.
    Kytka, M.
    Debarberis, L.
    Gillemot, F.
    Kryukov, A.
    Valo, M.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2007, (06): : 72 - 77
  • [4] The properties of WWER-440 type reactor pressure vessel steels cut out from operated units
    Korolev, Y
    Kryukov, A
    Nikolaev, Y
    Platonov, P
    Shtrombakh, Y
    Langer, R
    Leitz, C
    Rieg, C
    Nikolaev, V
    NUCLEAR ENGINEERING AND DESIGN, 2000, 195 (02) : 137 - 142
  • [5] Numerical simulation of hydrogen diffusion in the pressure vessel wall of a WWER-440 reactor
    Toribio, J.
    Vergara, D.
    Lorenzo, M.
    2ND INTERNATIONAL CONFERENCE ON ENERGY MATERIALS AND APPLICATIONS (ICEMA2017), 2017, 222
  • [6] THERMAL ANNEALING OF WWER-440 NUCLEAR REACTOR PRESSURE VESSEL INTERNALS MATERIAL
    Schnablova, Ivana
    Kopriva, Radim
    Bursik, Ondrej
    Rusnakova, Katerina
    Materna, Ales
    29TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2020), 2020, : 416 - 421
  • [7] VIBRATION INVESTIGATIONS AT THE WWER-440 PRESSURE-VESSEL
    GRUNWALD, G
    HESSEL, G
    SCHUMANN, P
    DOGE, S
    HARDTKE, HJ
    HOLZWEISSIG, F
    KERNENERGIE, 1985, 28 (01): : 18 - 26
  • [8] Fracture mechanics characterisation of the WWER-440 reactor pressure vessel beltline welding seam
    Viehrig, Hans-Werner
    Schuhknecht, Jan
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2009, 86 (04) : 239 - 245
  • [9] THERMAL ANNEALING OF WWER-440 NUCLEAR REACTOR PRESSURE VESSEL INTERNALS: PRESENT STATUS
    Bursik, Ondrej
    Maresova, Barbora
    Petelova, Petra
    Kopriva, Radim
    Pesek, Pavel
    27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2018), 2018, : 658 - 662
  • [10] NATURAL CIRCULATION IN WWER-440 REACTOR
    ALPATOV, AM
    GUCALOV, AT
    KERNENERGIE, 1977, 20 (07): : 217 - 219