Top-N Recommendation Using Low-Rank Matrix Completion and Spectral Clustering

被引:0
|
作者
Wang, Qian [1 ]
Zhou, Qingmei [2 ]
Zhao, Wei [2 ,3 ]
Wu, Xuangou [2 ,3 ]
Shao, Xun [4 ]
机构
[1] AnHui Univ Technol, Network & Informat Ctr, Maanshan 243032, Anhui, Peoples R China
[2] AnHui Univ Technol, Sch Comp Sci & Technol, Maanshan 243032, Anhui, Peoples R China
[3] AnHui Univ Technol, Anhui Engn Lab Intelligent Applicat & Secur Ind I, Maanshan 243032, Anhui, Peoples R China
[4] Kitami Inst Technol, Sch Reg Innovat & Social Design Engn, Kitami, Hokkaido 0908507, Japan
基金
中国国家自然科学基金;
关键词
recommendation system; low-rank matrix completion; spectral clustering;
D O I
10.1587/transcom.2019EBP3230
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the age of big data, recommendation systems provide users with fast access to interesting information, resulting to a significant commercial value. However, the extreme sparseness of user assessment data is one of the key factors that lead to the poor performance of recommendation algorithms. To address this problem, we propose a spectral clustering recommendation scheme with low-rank matrix completion and spectral clustering. Our scheme exploits spectral clustering to achieve the division of a similar user group. Meanwhile, the low-rank matrix completion is used to effectively predict un-rated items in the sub-matrix of the spectral clustering. With the real dataset experiment, the results show that our proposed scheme can effectively improve the prediction accuracy of unrated items.
引用
收藏
页码:951 / 959
页数:9
相关论文
共 50 条
  • [1] Spectral Clustering-based Matrix Completion Method for Top-n Recommendation
    Zhou, Qingmei
    Chen, Xin
    Zhang, Jiuya
    [J]. ICCDE 2019: PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING AND DATA ENGINEERING, 2019, : 1 - 6
  • [2] Matrix Completion with Preference Ranking for Top-N Recommendation
    Wang, Zengmao
    Guo, Yuhong
    Du, Bo
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3585 - 3591
  • [3] Low-Rank and Sparse Matrix Completion for Recommendation
    Zhao, Zhi-Lin
    Huang, Ling
    Wang, Chang-Dong
    Lai, Jian-Huang
    Yu, Philip S.
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 : 3 - 13
  • [4] Transfer to Rank for Top-N Recommendation
    Dai, Wei
    Zhang, Qing
    Pan, Weike
    Ming, Zhong
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (04) : 770 - 779
  • [5] A novel deep quantile matrix completion model for top-N recommendation
    Yang, Mingming
    Xu, Songhua
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [6] Holistic Transfer to Rank for Top-N Recommendation
    Ma, Wanqi
    Liao, Xiaoxiao
    Dai, Wei
    Pan, Weike
    Ming, Zhong
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2021, 11 (01)
  • [7] Low-Rank Matrix Completion
    Chi, Yuejie
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (05) : 178 - 181
  • [8] Pairwise deep learning to rank for top-N recommendation
    Zhou, Wang
    Yang, Yujun
    Du, Yajun
    Haq, Amin Ul
    [J]. Journal of Intelligent and Fuzzy Systems, 2021, 40 (06): : 10969 - 10980
  • [9] Pairwise deep learning to rank for top-N recommendation
    Zhou, Wang
    Yang, Yujun
    Du, Yajun
    Ul Haq, Amin
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10969 - 10980
  • [10] Reflection Removal Using Low-Rank Matrix Completion
    Han, Byeong-Ju
    Sim, Jae-Young
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3872 - 3880