Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles

被引:21
|
作者
Baragiola, Ben Q. [1 ]
Norris, Leigh M. [1 ]
Montano, Enrique [2 ]
Mickelson, Pascal G. [2 ]
Jessen, Poul S. [2 ]
Deutsch, Ivan H. [1 ]
机构
[1] Univ New Mexico, Ctr Quantum Informat & Control, Albuquerque, NM 87131 USA
[2] Univ Arizona, Ctr Quantum Informat & Control, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
基金
美国国家科学基金会;
关键词
QUANTUM MEMORY; ENTANGLEMENT; SCATTERING; SPECTROSCOPY; PROPAGATION;
D O I
10.1103/PhysRevA.89.033850
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the three-dimensional nature of the quantum interface between an ensemble of cold, trapped atomic spins and a paraxial laser beam, coupled through a dispersive interaction. To achieve strong entanglement between the collective atomic spin and the photons, one must match the spatial mode of the collective radiation of the ensemble with the mode of the laser beam while minimizing the effects of decoherence due to optical pumping. For ensembles coupling to a probe field that varies over the extent of the cloud, the set of atoms that indistinguishably radiates into a desired mode of the field defines an inhomogeneous spin wave. Strong coupling of a spin wave to the probe mode is not characterized by a single parameter, the optical density, but by a collection of different effective atom numbers that characterize the coherence and decoherence of the system. To model the dynamics of the system, we develop a full stochastic master equation, including coherent collective scattering into paraxial modes, decoherence by local inhomogeneous diffuse scattering, and backaction due to continuous measurement of the light entangled with the spin waves. This formalism is used to study the squeezing of a spin wave via continuous quantum nondemolition measurement. We find that the greatest squeezing occurs in parameter regimes where spatial inhomogeneities are significant, far from the limit in which the interface is well approximated by a one-dimensional, homogeneous model.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles (vol 89, 033850, 2014)
    Baragiola, Ben Q.
    Norris, Leigh M.
    Montano, Enrique
    Mickelson, Pascal G.
    Jessen, Poul S.
    Deutsch, Ivan H.
    [J]. PHYSICAL REVIEW A, 2014, 89 (04):
  • [2] Three-dimensional theory for light-matter interaction
    Sorensen, Martin W.
    Sorensen, Anders S.
    [J]. PHYSICAL REVIEW A, 2008, 77 (01)
  • [3] Squeezing of collective excitations in spin ensembles
    Andersen, Christian Kraglund
    Molmer, Klaus
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [4] Collective light-matter interaction in the presence of atomic recoil
    Perrin, Mathias
    Ye, Zongxiong
    Javaloyes, Julien
    Lippi, Gian Luca
    Politi, Antonio
    Narducci, Lorenzo M.
    [J]. Optics and Photonics News, 2001, 12 (12):
  • [5] Three-dimensional ab initio investigation of light-matter interaction in Mie lasers
    Fratalocchi, A.
    Conti, C.
    Ruocco, G.
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [6] Collective atomic spin squeezing and control
    L. Vernac
    M. Pinard
    V. Josse
    E. Giacobino
    [J]. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2002, 18 : 129 - 135
  • [7] Collective atomic spin squeezing and control
    Vernac, L
    Pinard, M
    Josse, V
    Giacobino, E
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2002, 18 (01): : 129 - 135
  • [8] Tunable Light-Matter Interactions with Cold Ensembles
    Kubasik, A.
    de Echaniz, S. R.
    Koschorreck, M.
    Napolitano, M.
    Polzik, E. S.
    Mitchell, M. W.
    [J]. 2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3508 - 3509
  • [9] Light-matter quantum interface
    Hammerer, K
    Molmer, K
    Polzik, ES
    Cirac, JI
    [J]. PHYSICAL REVIEW A, 2004, 70 (04): : 044304 - 1
  • [10] Spin Squeezing by Rydberg Dressing in an Array of Atomic Ensembles
    Hines, Jacob A.
    Rajagopal, Shankari, V
    Moreau, Gabriel L.
    Wahrman, Michael D.
    Lewis, Neomi A.
    Markovi, Ognjen
    Schleier-Smith, Monika
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (06)