Noether theorem for generalized Chaplygin system on time scales

被引:10
|
作者
Jin, S. X. [2 ,3 ]
Zhang, Y. [1 ]
机构
[1] Suzhou Univ Sci & Technol, Coll Civil Engn, Suzhou 215011, Peoples R China
[2] Shangqiu Normal Univ, Sch Math & Stat, Shangqiu 476000, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Noether theorem; Conserved quantity; Generalized Chaplygin system; Time scales; CONSERVED QUANTITIES; BIRKHOFFIAN SYSTEM; SYMMETRIES; CALCULUS; DELAY;
D O I
10.1007/s12648-018-1345-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the Noether theorem for generalized Chaplygin system on time scales is proposed and studied. The generalized Chaplygin formula for nonholonomic system on time scales is derived. The Noether theorems for generalized Chaplygin system on time scales are established, and two special cases of the Noether theorems for continuous and discrete generalized Chaplygin systems are given. Finally, two examples are given to illustrate the applications of the results.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 50 条
  • [1] Noether theorem for generalized Chaplygin system on time scales
    S. X. Jin
    Y. Zhang
    [J]. Indian Journal of Physics, 2019, 93 : 883 - 890
  • [2] Noether theorem and its inverse for nonstandard generalized Chaplygin systems
    S. X. Jin
    Y. M. Li
    X. W. Chen
    [J]. Acta Mechanica, 2024, 235 : 1361 - 1373
  • [3] Noether theorem and its inverse for nonstandard generalized Chaplygin systems
    Jin, S. X.
    Li, Y. M.
    Chen, X. W.
    [J]. ACTA MECHANICA, 2024, 235 (02) : 1361 - 1373
  • [4] The Second Noether Theorem on Time Scales
    Malinowska, Agnieszka B.
    Martins, Natalia
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [5] Noether's theorem on time scales
    Bartosiewicz, Zbigniew
    Torres, Delfim F. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1220 - 1226
  • [6] Noether theorem for Birkhoffian systems on time scales
    Song, Chuan-Jing
    Zhang, Yi
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [7] Generalized Chaplygin equations for nonholonomic systems on time scales
    金世欣
    张毅
    [J]. Chinese Physics B, 2018, 27 (02) : 271 - 276
  • [8] Generalized Chaplygin equations for nonholonomic systems on time scales
    Jin, Shi-Xin
    Zhang, Yi
    [J]. CHINESE PHYSICS B, 2018, 27 (02)
  • [9] Noether Theorem for Generalized Birkhoffian Systems with Time Delay
    Zhai Xianghua
    Zhang Yi
    [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2018, 35 (03) : 507 - 515
  • [10] Caputo Δ-type fractional time-scales noether theorem
    Tian, Xue
    Zhang, Yi
    [J]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (07): : 2010 - 2022