The strong two-generator property in rings of integer-valued polynomials determined by finite sets

被引:6
|
作者
Chapman, ST
Loper, A
Smith, WW
机构
[1] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[2] Ohio State Univ, Newark, OH 43055 USA
[3] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
关键词
D O I
10.1007/s00013-002-8261-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be an integral domain and E = {e(1),..., e(k)} a finite nonempty subset of D. Then Int(E, D) has the strong two-generator property if and only if D is a Bezout domain. If D is a Dedekind domain which is not a principal ideal domain, then we characterize which elements of Int(E, D) are strong two-generators.
引用
收藏
页码:372 / 377
页数:6
相关论文
共 50 条