Cylindrical fractional Brownian motion in Banach spaces

被引:4
|
作者
Issoglio, E. [1 ]
Riedle, M. [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Cylindrical fractional Brownian motion; Stochastic integration in Banach spaces; Stochastic partial differential equations; Fractional Ornstein-Uhlenbeck process; gamma-radonifying; Cylindrical measures; STOCHASTIC INTEGRATION; EVOLUTION-EQUATIONS; HILBERT-SPACE; CALCULUS; NOISES;
D O I
10.1016/j.spa.2014.05.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen-Loeve expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:3507 / 3534
页数:28
相关论文
共 50 条