Analysis of low count time series data by Poisson autoregression

被引:113
|
作者
Freeland, RK [1 ]
McCabe, BPM
机构
[1] Univ Waterloo, Waterloo, ON N2L 3G1, Canada
[2] Univ Liverpool, Liverpool L69 3BX, Merseyside, England
关键词
count data; birth and death process; information matrix test; maximum likelihood; Poisson autoregression; queuing process;
D O I
10.1111/j.1467-9892.2004.01885.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study provides new methods of assessing the adequacy of the Poisson autoregressive time-series model for count data. New expressions are given for the score function and the information matrix and these lead to the construction of new types of residuals for this model. However, these residuals often need to be supplemented by formal statistical procedures and an overall test of the model adequacy is given via the information matrix equality that holds for correctly specified models. The techniques are applied to a monthly count data set of claimants for wage loss benefit, in order to estimate the the expected duration of claimants in the system.
引用
收藏
页码:701 / 722
页数:22
相关论文
共 50 条
  • [1] Bayesian analysis of time series Poisson data
    Oh, MS
    Lim, YB
    [J]. JOURNAL OF APPLIED STATISTICS, 2001, 28 (02) : 259 - 271
  • [2] Poisson QMLE of Count Time Series Models
    Ahmad, Ali
    Francq, Christian
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (03) : 291 - 314
  • [3] Cluster Analysis of the Realizations of Autoregression Time Series
    E. E. Zhuk
    [J]. Automation and Remote Control, 2003, 64 : 65 - 75
  • [4] Cluster analysis of the realizations of autoregression time series
    Zhuk, EE
    [J]. AUTOMATION AND REMOTE CONTROL, 2003, 64 (01) : 65 - 75
  • [5] AUTOCORRELATION AND AUTOREGRESSION PROGRAM FOR NONSTATIONARY TIME SERIES DATA
    BRONFMAN, B
    VAUGHT, RS
    [J]. BEHAVIORAL SCIENCE, 1973, 18 (02): : 151 - 152
  • [6] Time series of count data: A review, empirical comparisons and data analysis
    Franco, Glaura C.
    Migon, Helio S.
    Prates, Marcos O.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2019, 33 (04) : 756 - 781
  • [7] Low-Pass Filtering Method for Poisson Data Time Series
    Getmanov, Victor
    Chinkin, Vladislav
    Sidorov, Roman
    Gvishiani, Alexei
    Dobrovolsky, Mikhail
    Soloviev, Anatoly
    Dmitrieva, Anna
    Kovylyaeva, Anna
    Osetrova, Nataliya
    Yashin, Igor
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (10):
  • [8] Local influence analysis for Poisson autoregression with an application to stock transaction data
    Zhu, Fukang
    Liu, Shuangzhe
    Shi, Lei
    [J]. STATISTICA NEERLANDICA, 2016, 70 (01) : 4 - 25
  • [9] ANALYSIS OF COUNT DATA USING POISSON REGRESSION
    LOVETT, A
    FLOWERDEW, R
    [J]. PROFESSIONAL GEOGRAPHER, 1989, 41 (02): : 190 - 198
  • [10] Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes
    Hougaard, P
    Lee, MLT
    Whitmore, GA
    [J]. BIOMETRICS, 1997, 53 (04) : 1225 - 1238