Improving the Classification Effectiveness of Intrusion Detection by Using Improved Conditional Variational AutoEncoder and Deep Neural Network

被引:158
|
作者
Yang, Yanqing [1 ,2 ]
Zheng, Kangfeng [1 ]
Wu, Chunhua [1 ]
Yang, Yixian [1 ,3 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
[2] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[3] Guizhou Univ, Guizhou Prov Key Lab Publ Big Data, Guiyang 550025, Guizhou, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
intrusion detection; variational inference; improved conditional variational autoencoder; generator network; deep neural network; RESTRICTED BOLTZMANN MACHINES; SUPPORT VECTOR MACHINE; DETECTION SYSTEM; LEARNING APPROACH; MODEL;
D O I
10.3390/s19112528
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Intrusion detection systems play an important role in preventing security threats and protecting networks from attacks. However, with the emergence of unknown attacks and imbalanced samples, traditional machine learning methods suffer from lower detection rates and higher false positive rates. We propose a novel intrusion detection model that combines an improved conditional variational AutoEncoder (ICVAE) with a deep neural network (DNN), namely ICVAE-DNN. ICVAE is used to learn and explore potential sparse representations between network data features and classes. The trained ICVAE decoder generates new attack samples according to the specified intrusion categories to balance the training data and increase the diversity of training samples, thereby improving the detection rate of the imbalanced attacks. The trained ICVAE encoder is not only used to automatically reduce data dimension, but also to initialize the weight of DNN hidden layers, so that DNN can easily achieve global optimization through back propagation and fine tuning. The NSL-KDD and UNSW-NB15 datasets are used to evaluate the performance of the ICVAE-DNN. The ICVAE-DNN is superior to the three well-known oversampling methods in data augmentation. Moreover, the ICVAE-DNN outperforms six well-known models in detection performance, and is more effective in detecting minority attacks and unknown attacks. In addition, the ICVAE-DNN also shows better overall accuracy, detection rate and false positive rate than the nine state-of-the-art intrusion detection methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Intrusion Detection Toward Feature Reconstruction using Huber Conditional Variational AutoEncoder
    Razafimahatratra, Fenohasina Lova
    Rakotomandimby, Miora Fifaliana
    Wajira, Prasad De Silva
    36TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2022), 2022, : 13 - 17
  • [2] Intrusion Detection System using Autoencoder based Deep Neural Network for SME Cybersecurity
    Ubaidillah, Khaizuran Aqhar
    Hisham, Syifak Izhar
    Ernawan, Ferda
    Badshah, Gran
    Suharto, Edy
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [3] A deep learning approach to network intrusion detection using deep autoencoder
    Moraboena S.
    Ketepalli G.
    Ragam P.
    Rev. Intell. Artif., 4 (457-463): : 457 - 463
  • [4] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    Jiaxing He
    Xiaodan Wang
    Yafei Song
    Qian Xiang
    Chen Chen
    Applied Intelligence, 2023, 53 : 12416 - 12436
  • [5] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    He, Jiaxing
    Wang, Xiaodan
    Song, Yafei
    Xiang, Qian
    Chen, Chen
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12416 - 12436
  • [6] Toward Effective Intrusion Detection Using Log-Cosh Conditional Variational Autoencoder
    Xu, Xing
    Li, Jie
    Yang, Yang
    Shen, Fumin
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (08) : 6187 - 6196
  • [7] Insider Threat Detection using Deep Autoencoder and Variational Autoencoder Neural Networks
    Pantelidis, Efthimios
    Bendiab, Gueltoum
    Shiaeles, Stavros
    Kolokotronis, Nicholas
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 129 - 134
  • [8] An Improved Network Intrusion Detection Based on Deep Neural Network
    Zhang, Lin
    Li, Meng
    Wang, Xiaoming
    Huang, Yan
    2019 INTERNATIONAL CONFERENCE ON ADVANCED ELECTRONIC MATERIALS, COMPUTERS AND MATERIALS ENGINEERING (AEMCME 2019), 2019, 563
  • [9] Improving Fault Localization Using Conditional Variational Autoencoder
    Fang, Xianmei
    Gao, Xiaobo
    Wang, Yuting
    Liao, Zhouyu
    Ma, Yue
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (08) : 1490 - 1494
  • [10] A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network
    Rao, K. Narayana
    Rao, K. Venkata
    Reddy, P. V. G. D. Prasad
    COMPUTER COMMUNICATIONS, 2021, 180 : 77 - 88