Invariant geometric properties of a class of 3D chaotic flows

被引:3
|
作者
Giona, M [1 ]
Adrover, A [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Chim, I-00184 Rome, Italy
关键词
vector dynamics; C-infinity-diffeomorphism; chaotic flows;
D O I
10.1016/S0167-2789(99)00240-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article extends the analysis developed by Giona and Adrover [M. Giona, A. Adrover, Phys. Rev. Lett. 81 (1998) 3864] for 2D area-preserving diffeomorphisms to 3D volume-preserving C-infinity-diffeomorphisms of the 3D torus topologically conjugate to a linear map. The article analyzes the invariant geometric properties of vector dynamics and surface element evolution in 3D systems and provides an analytic expression for the probability measure describing pointwise statistical properties of the unstable foliations in the hyperbolic case. The convergence propel ties of this measure are addressed starting from the dynamics of surface elements. The application of the methods developed to physically realizable 3D chaotic flows such as ABC flow is discussed in detail. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:50 / 68
页数:19
相关论文
共 50 条
  • [1] A class of switchable 3D chaotic systems
    Liu Yang-Zheng
    Jiang Chang-Sheng
    Lin Chang-Sheng
    Xiong Xing
    Shi Lei
    ACTA PHYSICA SINICA, 2007, 56 (06) : 3107 - 3112
  • [2] Simple chaotic 3D flows with surfaces of equilibria
    Jafari, Sajad
    Sprott, J. C.
    Viet-Thanh Pham
    Volos, Christos
    Li, Chunbiao
    NONLINEAR DYNAMICS, 2016, 86 (02) : 1349 - 1358
  • [3] Simple chaotic 3D flows with surfaces of equilibria
    Sajad Jafari
    J. C. Sprott
    Viet-Thanh Pham
    Christos Volos
    Chunbiao Li
    Nonlinear Dynamics, 2016, 86 : 1349 - 1358
  • [4] Geometric Invariant Representation Learning for 3D Point Cloud
    Li, Zongmin
    Zhang, Yupeng
    Bai, Yun
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1480 - 1485
  • [5] Observers for a class of 3D continuous chaotic systems
    Zhou, P
    ACTA PHYSICA SINICA, 2003, 52 (05) : 1108 - 1111
  • [6] Invariant Geometric Properties in Hele-Shaw Flows
    Paula Curt
    Computational Methods and Function Theory, 2016, 16 : 503 - 513
  • [7] Invariant Geometric Properties in Hele-Shaw Flows
    Curt, Paula
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 503 - 513
  • [8] Geometric properties of the 3D spine curve
    Sotoca, JM
    Buendía, M
    Iñesta, JM
    Ferri, FJ
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PROCEEDINGS, 2003, 2652 : 1003 - 1011
  • [9] Geometric properties of 3D array systems
    Efstathopoulos, G.
    Elissaios, G.
    Manikas, A.
    WSEAS Transactions on Communications, 2006, 5 (10): : 1959 - 1964
  • [10] A Method Based on Geometric Invariant Feature for 3D Face Recognition
    Guo, Zhe
    Zhang, Yanning
    Lin, Zenggang
    Feng, Dagan
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 902 - 906