Development and validation of a novel risk stratification algorithm for relapsed multiple myeloma

被引:7
|
作者
Hajek, Roman [1 ]
Delforge, Michel [2 ]
Raab, Marc S. [3 ]
Schoen, Paul [4 ]
DeCosta, Lucy [5 ]
Spicka, Ivan [6 ,7 ]
Radocha, Jakub [8 ,9 ]
Pour, Ludek [10 ,11 ]
Gonzalez-McQuire, Sebastian [4 ]
Bouwmeester, Walter [12 ]
机构
[1] Univ Hosp Ostrava, Dept Haematooncol, 17 Listopadu 1790, Ostrava 70852, Czech Republic
[2] Univ Hosp Leuven, Dept Haematol, Leuven, Belgium
[3] Univ Hosp Heidelberg, Dept Internal Med 5, Heidelberg, Germany
[4] Amgen Europe GmbH, Rotkreuz, Switzerland
[5] Amgen Ltd, Uxbridge, Middx, England
[6] Charles Univ Prague, Fac Med 1, Dept Clin Haematol, Med Dept 1, Hradec Kralove, Czech Republic
[7] Charles Univ Prague, Gen Teaching Hosp, Hradec Kralove, Czech Republic
[8] Charles Univ Hosp, Dept Med Haematol 4, Hradec Kralove, Czech Republic
[9] Fac Med Hradec Kralove, Hradec Kralove, Czech Republic
[10] Univ Hosp Brno, Dept Internal Med Haematol & Oncol, Brno, Czech Republic
[11] Masaryk Univ, Fac Med, Brno, Czech Republic
[12] Pharmerit Int, Rotterdam, Netherlands
关键词
algorithm; multiple myeloma; overall survival; relapsed; risk stratification; INTERNATIONAL STAGING SYSTEM; DEXAMETHASONE; LENALIDOMIDE; DARATUMUMAB;
D O I
10.1111/bjh.16105
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple myeloma (MM) is a malignancy with varying survival outcomes and drivers of disease progression. Existing MM staging tools were developed using data from newly diagnosed patients. As patient characteristics and disease-related factors change between diagnosis and the initiation of second-line (2L) treatment, an unmet need exists for a tool that can evaluate risk of death at first relapse. We have developed a risk stratification algorithm (RSA) using data from patients with MM who were at 2L. Hazard ratios for independent predictors of overall survival (OS) were derived from a Cox models, and individual patient scores were calculated for total risk. K-adaptive partitioning for survival was used to stratify patients into groups based on their scores. Relative risk doubled with ascending risk group; median OSs for patients in group 1 (lowest risk)-4 (highest risk) were 61 center dot 6, 29 center dot 6, 14 center dot 2 and 5 center dot 9 months, respectively. Differences in OS between risk groups were significant. Similar stratification was observed when the RSA was applied to an external validation data set. In conclusion, we have developed a validated RSA that can quantify total risk, frailty risk and disease aggressiveness risk, and stratify patients with MM at 2L into groups with profoundly different survival expectations.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 50 条
  • [1] Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting
    Bouwmeester, Walter
    Briggs, Andrew
    van Hout, Ben
    Hajek, Roman
    Gonzalez-McQuire, Sebastian
    Campioni, Marco
    DeCosta, Lucy
    Brozova, Lucie
    ONCOLOGY AND THERAPY, 2019, 7 (02) : 141 - 157
  • [2] Methodology of a Novel Risk Stratification Algorithm for Patients with Multiple Myeloma in the Relapsed Setting
    Walter Bouwmeester
    Andrew Briggs
    Ben van Hout
    Roman Hájek
    Sebastian Gonzalez-McQuire
    Marco Campioni
    Lucy DeCosta
    Lucie Brozova
    Oncology and Therapy, 2019, 7 : 141 - 157
  • [3] Novel risk stratification algorithm for estimating the risk of death in patients with relapsed multiple myeloma: external validation in a retrospective chart review
    Hajek, Roman
    Gonzalez-McQuire, Sebastian
    Szabo, Zsolt
    Delforge, Michel
    DeCosta, Lucy
    Raab, Marc S.
    Bouwmeester, Walter
    Campioni, Marco
    Briggs, Andrew
    BMJ OPEN, 2020, 10 (07):
  • [4] Risk Stratification in Multiple Myeloma
    Melissa Gaik-Ming Ooi
    Sanjay de Mel
    Wee Joo Chng
    Current Hematologic Malignancy Reports, 2016, 11 : 137 - 147
  • [5] Risk Stratification in Multiple Myeloma
    Ooi, Melissa Gaik-Ming
    de Mel, Sanjay
    Chng, Wee Joo
    CURRENT HEMATOLOGIC MALIGNANCY REPORTS, 2016, 11 (02) : 137 - 147
  • [6] Development and Validation of a Diabetic Retinopathy Risk Stratification Algorithm
    Tarasewicz, Dariusz
    Karter, Andrew J.
    Pimentel, Noel
    Moffet, Howard H.
    Thai, Khanh K.
    Schlessinger, David
    Sofrygin, Oleg
    Melles, Ronald B.
    DIABETES CARE, 2023, 46 (05) : 1068 - 1075
  • [7] Therapy for Relapsed Multiple Myeloma: Guidelines From the Mayo Stratification for Myeloma and Risk-Adapted Therapy
    Dingli, David
    Ailawadhi, Sikander
    Bergsagel, P. Leif
    Buadi, Francis K.
    Dispenzieri, Angela
    Fonseca, Rafael
    Gertz, Morie A.
    Gonsalves, Wilson I.
    Hayman, Susan R.
    Kapoor, Prashant
    Kourelis, Taxiarchis
    Kumar, Shaji K.
    Kyle, Robert A.
    Lacy, Martha Q.
    Leung, Nelson
    Lin, Yi
    Lust, John A.
    Mikhael, Joseph R.
    Reeder, Craig B.
    Roy, Vivek
    Russell, Stephen J.
    Sher, Taimur
    Stewart, A. Keith
    Warsame, Rahma
    Zeldenrust, Stephen R.
    Rajkumar, S. Vincent
    Khan, Asher A. Chanan
    MAYO CLINIC PROCEEDINGS, 2017, 92 (04) : 578 - 598
  • [8] THE MULTIPLE MYELOMA GENOME PROJECT: DEVELOPMENT OF A MOLECULAR SEGMENTATION STRATEGY FOR RISK STRATIFICATION OF MULTIPLE MYELOMA
    Mavrommatis, K.
    Walker, B.
    Samur, M.
    Towfic, F.
    Ashby, C.
    Wardell, C.
    Bauer, M.
    Ortiz, M.
    Flynt, E.
    Yu, Z.
    Amatangelo, M.
    Trotter, M.
    Avet-Loiseau, H.
    Jackson, G.
    Anderson, K.
    Thakurta, A.
    Munshi, N.
    Morgan, G.
    HAEMATOLOGICA, 2017, 102 : 494 - +
  • [9] SURVIVAL STRATIFICATION OF PATIENTS WITH MULTIPLE MYELOMA (MM) AFTER FIRST RELAPSE: SENSITIVITY ANALYSES OF A NOVEL RISK STRATIFICATION ALGORITHM (RSA)
    Hajek, R.
    Delforge, M.
    Raab, M.
    Pour, L.
    Spicka, I.
    Gregora, E.
    Minarik, J.
    Gonzalez-McQuire, S.
    Bouwmeester, W.
    Maisnar, V.
    HAEMATOLOGICA, 2017, 102 : 521 - 522
  • [10] Diagnosis and Risk Stratification in Multiple Myeloma
    van de Donk, Niels W. C. J.
    Sonneveld, Pieter
    HEMATOLOGY-ONCOLOGY CLINICS OF NORTH AMERICA, 2014, 28 (05) : 791 - +