Photonics for artificial intelligence and neuromorphic computing

被引:804
|
作者
Shastri, Bhavin J. [1 ,2 ]
Tait, Alexander N. [2 ,3 ]
de Lima, T. Ferreira [2 ]
Pernice, Wolfram H. P. [4 ,5 ]
Bhaskaran, Harish [6 ]
Wright, C. D. [7 ]
Prucnal, Paul R. [2 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada
[2] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[3] NIST, Appl Phys Div, Boulder, CO 80309 USA
[4] Univ Munster, Inst Phys, Munster, Germany
[5] Univ Munster, Ctr Soft Nanosci SoN, Munster, Germany
[6] Univ Oxford, Dept Mat, Oxford, England
[7] Univ Exeter, Dept Engn, Exeter, Devon, England
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
NEURAL-NETWORKS; LITHIUM-NIOBATE; MODULATOR; LASERS; IMPLEMENTATION; INTEGRATION; PERFORMANCE; MACHINE; MEMORY; EXCITABILITY;
D O I
10.1038/s41566-020-00754-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Research in photonic computing has flourished due to the proliferation of optoelectronic components on photonic integration platforms. Photonic integrated circuits have enabled ultrafast artificial neural networks, providing a framework for a new class of information processing machines. Algorithms running on such hardware have the potential to address the growing demand for machine learning and artificial intelligence in areas such as medical diagnosis, telecommunications, and high-performance and scientific computing. In parallel, the development of neuromorphic electronics has highlighted challenges in that domain, particularly related to processor latency. Neuromorphic photonics offers sub-nanosecond latencies, providing a complementary opportunity to extend the domain of artificial intelligence. Here, we review recent advances in integrated photonic neuromorphic systems, discuss current and future challenges, and outline the advances in science and technology needed to meet those challenges.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [1] Photonics for artificial intelligence and neuromorphic computing
    Bhavin J. Shastri
    Alexander N. Tait
    T. Ferreira de Lima
    Wolfram H. P. Pernice
    Harish Bhaskaran
    C. D. Wright
    Paul R. Prucnal
    Nature Photonics, 2021, 15 : 102 - 114
  • [2] Silicon Photonics for Neuromorphic Computing and Artificial Intelligence: Applications and Roadmap
    Shastri, B. J.
    Huang, C.
    Tait, A. N.
    Ferreira de Lima, T.
    Prucnal, P. R.
    2022 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS 2022), 2022, : 18 - 26
  • [3] Neuromorphic Silicon Photonics for Artificial Intelligence
    Marquez, Bicky A.
    Huang, Chaoran
    Prucnal, Paul R.
    Shastri, Bhavin J.
    SILICON PHOTONICS IV: INNOVATIVE FRONTIERS, 2021, 139 : 417 - 447
  • [4] Integrated Photonics for Computing and Artificial Intelligence
    Feng, Chenghao
    Ning, Shupeng
    Gu, Jiaqi
    Zhu, Hanqing
    Pan, David Z.
    Chen, Ray T.
    2023 IEEE PHOTONICS SOCIETY SUMMER TOPICALS MEETING SERIES, SUM, 2023,
  • [5] Photonics for Neuromorphic Computing
    Prucnal, Paul R.
    Tait, Alexander N.
    Nahmias, Mitchell A.
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Shastri, Bhavin J.
    2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2018,
  • [6] Current Research and Future Prospects of Neuromorphic Computing in Artificial Intelligence
    Vishwa, R.
    Karthikeyan, R.
    Rohith, R.
    Sabaresh, A.
    3RD INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2020), PTS 1-6, 2020, 912
  • [7] Synaptic devices based neuromorphic computing applications in artificial intelligence
    Sun, Bai
    Guo, Tao
    Zhou, Guangdong
    Ranjan, Shubham
    Jiao, Yixuan
    Wei, Lan
    Zhou, Y. Norman
    Wu, A. Yimin
    MATERIALS TODAY PHYSICS, 2021, 18
  • [8] Photonics approaches to the implementation of neuromorphic computing
    Musorin, A. I.
    Shorokhov, A. S.
    Chezhegov, A. A.
    Baluyan, T. G.
    Safronov, K. R.
    Chetvertukhin, A. V.
    Grunin, A. A.
    Fedyanin, A. A.
    PHYSICS-USPEKHI, 2023, 66 (12) : 1284 - 1297
  • [9] Neuromorphic computing with integrated photonics and superconductors
    Shainline, Jeffrey M.
    Buckley, Sonia M.
    Mirin, Richard P.
    Nam, Sae Woo
    2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [10] Neuromorphic Computing Based on Silicon Photonics and Reservoir Computing
    Katumba, Andrew
    Freiberger, Matthias
    Laporte, Floris
    Lugnan, Alessio
    Sackesyn, Stijn
    Ma, Chonghuai
    Dambre, Joni
    Bienstman, Peter
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)