Research progress on silicon/carbon composite anode materials for lithium-ion battery

被引:313
|
作者
Shen, Xiaohui [2 ]
Tian, Zhanyuan [1 ,2 ]
Fan, Ruijuan [2 ]
Shao, Le [2 ]
Zhang, Dapeng [2 ]
Cao, Guolin [2 ]
Kou, Liang [3 ]
Bai, Yangzhi [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Ctr Nanomat Renewable Energy, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Shaanxi, Peoples R China
[2] Shaanxi Coal & Chem Technol Inst Co Ltd, New Energy Technol Dept, Xian 710070, Shaanxi, Peoples R China
[3] Shaanxi Coal & Chem Technol Inst Co Ltd, Xian 710070, Shaanxi, Peoples R China
关键词
Lithium-ion batteries; Anodes; Silicon/carbon composite; ELECTROLYTE INTERPHASE FILM; SI-BASED ANODES; HIGH-CAPACITY; FACILE SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; INTERFACIAL PROPERTIES; NEGATIVE ELECTRODES; SUCCINIC ANHYDRIDE; CARBON NANOTUBES; RATE CAPABILITY;
D O I
10.1016/j.jechem.2017.12.012
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Silicon (Si) has been considered as one of the most promising anode material for the next generation lithium-ion batteries (LIBs) with high energy densities, due to its high theoretical capacity, abundant availability and environmental friendliness. However, silicon materials with low intrinsic electric and ionic conductivity suffer from huge volume variation during lithiation/delithiation processes leading to the pulverization of Si and subsequently resulting in severe capacity fading of the electrodes. Coupling of Si with carbon (C) realizes a favorable combination of the two materials properties, such as high lithiation capacity of Si and excellent mechanical and conductive properties of C, making silicon/carbon composite (Si/C) ideal candidates for LIBs anodes. In this review, recent progresses of Si/C materials utilized in LIBs are summarized in terms of structural design principles, material synthesis methods, morphological characteristics and electrochemical performances by highlighting the material structures. The mechanisms behind the performance enhancement are also discussed. Moreover, other factors that affect the performance of Si/C anodes, such as prelithiation, electrolyte additives, and binders, are also discussed. We aim to present a full scope of the Si/C-based anodes, and help understand and design future structures of Si/C anodes in LIBs. (C) 2018 Published by Elsevier B.V. and Science Press.
引用
收藏
页码:1067 / 1090
页数:24
相关论文
共 50 条
  • [1] Research progress on silicon/carbon composite anode materials for lithium-ion battery
    Xiaohui Shen
    Zhanyuan Tian
    Ruijuan Fan
    Le Shao
    Dapeng Zhang
    Guolin Cao
    Liang Kou
    Yangzhi Bai
    [J]. Journal of Energy Chemistry., 2018, 27 (04) - 1090
  • [2] Research progress on silicon/carbon composite anode materials for lithium-ion battery
    Xiaohui Shen
    Zhanyuan Tian
    Ruijuan Fan
    Le Shao
    Dapeng Zhang
    Guolin Cao
    Liang Kou
    Yangzhi Bai
    [J]. Journal of Energy Chemistry, 2018, (04) : 1067 - 1090
  • [3] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    [J]. ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [4] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    [J]. Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [5] Research progress in silicon based anode materials for lithium-ion batteries
    Zhao Jishi
    He Xiangming
    Wan Chunrong
    Jiang Changyin
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2007, 36 (08) : 1490 - 1494
  • [6] Research progress of anode materials for lithium ion battery
    Liu, Qi
    Hao, Siyu
    Feng, Dong
    Mei, Yi
    Zeng, Tianbiao
    [J]. Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (04): : 1446 - 1456
  • [7] The effect of activated carbon and silicon oxycarbide as anode materials on lithium-ion battery
    Priyono, Bambang
    Egieara, Natasha Chandri
    Syahrial, Anne Zulfia
    Hudaya, Chairul
    Subhan, Achmad
    Jodi, Heri
    [J]. 3RD INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE SUSTAINABLE DEVELOPMENT OF TROPICAL RENEWABLE ENERGY (I-TREC 2018), 2018, 67
  • [8] Correction to: Research progress of nano‑silicon‑based materials and silicon‑carbon composite anode materials for lithium‑ion batteries
    Zhongliang Xiao
    Cheng Wang
    Liubin Song
    Youhang Zheng
    Tianyuan Long
    [J]. Journal of Solid State Electrochemistry, 2022, 26 : 1137 - 1137
  • [9] Progress in modification of micron silicon-based anode materials for lithium-ion battery
    Chen, Xinyuan
    Liu, Qi
    Hou, Lijuan
    Yang, Qiang
    Zhao, Xiaohan
    Mu, Daobin
    Li, Li
    Chen, Renjie
    Wu, Feng
    [J]. JOURNAL OF ENERGY STORAGE, 2024, 93
  • [10] Research Progress on Coating Structure of Silicon Anode Materials for Lithium-Ion Batteries
    Xu, Ke
    Liu, Xuefeng
    Guan, Keke
    Yu, Yingjie
    Lei, Wen
    Zhang, Shaowei
    Jia, Quanli
    Zhang, Haijun
    [J]. CHEMSUSCHEM, 2021, 14 (23) : 5135 - 5160