Controllable Molecular Modulation of Conductivity in Silicon-Based Devices

被引:45
|
作者
He, Tao [1 ,2 ,3 ,4 ,5 ]
Corley, David A. [1 ,2 ,3 ,4 ,5 ]
Lu, Meng [1 ,2 ,3 ,4 ,5 ]
Di Spigna, Neil Halen [6 ]
He, Jianli [1 ,2 ,3 ,4 ,5 ]
Nackashi, David P. [6 ]
Franzon, Paul D. [6 ]
Tour, James M. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
[3] Rice Univ, Dept Mech Engn, Houston, TX 77005 USA
[4] Rice Univ, Dept Mat Sci, Houston, TX 77005 USA
[5] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
[6] N Carolina State Univ, Dept Elect & Comp Engn, Raleigh, NC 27695 USA
关键词
THRESHOLD-VOLTAGE; MOSFET; EXTRACTION; CONDUCTANCE; TRANSITION; TRANSISTOR; TRANSPORT; GAAS; SI;
D O I
10.1021/ja9002537
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electronic properties of silicon, such as the conductivity, are largely dependent on the density of the mobile charge carriers, which can be tuned by gating and impurity doping. When the device size scales down to the nanoscale, routine doping becomes problematic due to inhomogeneities. Here we report that a molecular monolayer, covalently grafted-atop a silicon channel, can play a role similar to gating and impurity doping. Charge transfer occurs between the silicon and the molecules upon grafting, which can influence the surface band bending, and makes the molecules act as donors or acceptors. The partly charged end-groups of the grafted molecular layer may act as a top gate. The doping- and gating-like effects together lead to the observed controllable modulation of conductivity in pseudometal-oxide-semiconductor field-effect transistors (pseudo-MOSFETs). The molecular effects can even penetrate through a 4.92-mu m thick silicon layer. Our results offer a paradigm for controlling electronic characteristics in nanodevices at the future diminutive technology nodes.
引用
收藏
页码:10023 / 10030
页数:8
相关论文
共 50 条
  • [1] The characterization of silicon-based molecular devices
    Gergel-Hackett, N.
    Hacker, C. A.
    Richter, L. J.
    Kirillov, O. A.
    Richter, C. A.
    FRONTIERS OF CHARACTERIZATION AND METROLOGY FOR NANOELECTRONICS: 2007, 2007, 931 : 467 - +
  • [2] Ultrafast all-optical modulation in silicon-based nanoplasmonic devices
    Elezzabi, A. Y.
    Han, Z.
    Sederberg, S.
    Van, V.
    OPTICS EXPRESS, 2009, 17 (13): : 11045 - 11056
  • [3] Silicon-based light emitting devices
    Lourenço, MA
    Milosavljevic, M
    Galata, S
    Siddiqui, MSA
    Shao, G
    Gwilliam, RM
    Homewood, KP
    VACUUM, 2005, 78 (2-4) : 551 - 556
  • [4] Silicon-based optoelectronic synaptic devices*
    Yin, Lei
    Pi, Xiaodong
    Yang, Deren
    CHINESE PHYSICS B, 2020, 29 (07)
  • [5] Silicon-based optoelectronic synaptic devices
    尹蕾
    皮孝东
    杨德仁
    Chinese Physics B, 2020, (07) : 13 - 26
  • [6] Silicon-based Devices for Computer Interconnects
    Wosinski, Lech
    Wang, Zhechao
    2010 IEEE 4TH INTERNATIONAL SYMPOSIUM ON ADVANCED NETWORKS AND TELECOMMUNICATION SYSTEMS (ANTS), 2010, : 7 - 9
  • [7] SILICON-BASED MICROMECHANICAL STRUCTURES AND DEVICES
    GABRIEL, KJ
    BEHI, F
    MAHADEVAN, R
    WALKER, JA
    MEHREGANY, M
    PRECISION ENGINEERING AND OPTOMECHANICS, 1989, 1167 : 137 - 150
  • [8] Silicon-based integrated optical devices
    Jessop, PE
    Pearson, MRT
    Janz, S
    Xu, DX
    INTEGRATED OPTOELECTRONICS, PROCEEDINGS, 2002, 2002 (04): : 333 - 344
  • [9] Engineering the Electron Transport of Silicon-Based Molecular Electronic Devices via Molecular Dipoles
    Gergel-Hackett, Nadine
    Aguilar, Izath
    Richter, Curt A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49): : 21708 - 21714
  • [10] Silicon-based molecular nanotechnology
    Hersam, MC
    Guisinger, NP
    Lyding, JW
    NANOTECHNOLOGY, 2000, 11 (02) : 70 - 76