Pose estimation-based lameness recognition in broiler using CNN-LSTM network

被引:40
|
作者
Nasiri, Amin [1 ]
Yoder, Jonathan [1 ]
Zhao, Yang [2 ]
Hawkins, Shawn [1 ]
Prado, Maria [2 ]
Gan, Hao [1 ]
机构
[1] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN 37996 USA
[2] Univ Tennessee, Dept Anim Sci, Knoxville, TN 37901 USA
关键词
Broiler; Lameness; Gait score; CNN; LSTM; GAIT ANALYSIS; SYSTEM; PREDICTION; BEHAVIOR; SCORE;
D O I
10.1016/j.compag.2022.106931
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Poultry behavior is a critical indicator of its health and welfare. Lameness is a clinical symptom indicating the existence of health problems in poultry. Therefore, lameness detection in the early stages is vital to broiler producers. In this study, a pose estimation-based model was developed to identify lameness in broilers through analyzing video footages for the first time. A deep convolutional neural network was used to detect and track seven key points on the bodies of walking broilers. Then consecutive extracted key points were fed into Long Short-Term Memory (LSTM) model to classify broilers according to a 6-point assessment method. This paper proposes the first large-scale benchmark for broiler pose estimation, consisting of 9,412 images. In addition, the dataset includes 400 videos (36,120 frames in total) of broilers with different gait score levels. The developed LSTM model achieved an overall classification accuracy of 95%, and the average per class classification accuracy was 97.5%. The obtained results prove that the pose estimation-based model as an automatic and non-invasive tool of lameness assessment can be applied to poultry farms for efficient management.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Personality-Based Emotion Recognition Using EEG Signals with a CNN-LSTM Network
    Hosseini, Mohammad Saleh Khajeh
    Firoozabadi, Seyed Mohammad
    Badie, Kambiz
    Azadfallah, Parviz
    BRAIN SCIENCES, 2023, 13 (06)
  • [2] Cascading Pose Features with CNN-LSTM for Multiview Human Action Recognition
    Malik, Najeeb ur Rehman
    Abu-Bakar, Syed Abdul Rahman
    Sheikh, Usman Ullah
    Channa, Asma
    Popescu, Nirvana
    SIGNALS, 2023, 4 (01): : 40 - 55
  • [3] Facial Expression Recognition Based on CNN-LSTM
    Liu, Anping
    Yue, Hongjie
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 486 - 491
  • [4] ?-OTDR pattern recognition based on CNN-LSTM
    Wang, Ming
    Feng, Hao
    Qi, Dunzhe
    Du, Lipu
    Sha, Zhou
    OPTIK, 2023, 272
  • [5] Data Augmentation for Recognition of Handwritten Words and Lines using a CNN-LSTM Network
    Wigington, Curtis
    Stewart, Seth
    Davis, Brian
    Barrett, Bill
    Price, Brian
    Cohen, Scott
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 639 - 645
  • [6] Emotion Recognition from Facial Expression Using Hybrid CNN-LSTM Network
    Mohana, M.
    Subashini, P.
    Krishnaveni, M.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (08)
  • [7] EMG-based HCI Using CNN-LSTM Neural Network for Dynamic Hand Gestures Recognition
    Li, Qiyu
    Langari, Reza
    IFAC PAPERSONLINE, 2022, 55 (37): : 426 - 431
  • [8] Comparison of CNN and CNN-LSTM Algorithms based on Earthquake Magnitude Estimation
    Wang, Haomiao
    Wang, Huaixiu
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2694 - 2698
  • [9] A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors
    Volkan Y. Senyurek
    Masudul H. Imtiaz
    Prajakta Belsare
    Stephen Tiffany
    Edward Sazonov
    Biomedical Engineering Letters, 2020, 10 : 195 - 203
  • [10] A CNN-LSTM neural network for recognition of puffing in smoking episodes using wearable sensors
    Senyurek, Volkan Y.
    Imtiaz, Masudul H.
    Belsare, Prajakta
    Tiffany, Stephen
    Sazonov, Edward
    BIOMEDICAL ENGINEERING LETTERS, 2020, 10 (02) : 195 - 203