THE FAST BISECTION EIGENVALUE METHOD FOR HERMITIAN ORDER ONE QUASISEPARABLE MATRICES AND COMPUTATIONS OF NORMS

被引:0
|
作者
Eidelman, Yuli [1 ]
Haimovici, Iulian [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
quasiseparable; Hermitian; Sturm property; matrix norm; eigenvalues; bisection;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Since we can evaluate the characteristic polynomial of an N x N order one quasiseparable Hermitian matrix A in less than 10N arithmetical operations by sharpening results and techniques from Eidelman, Gohberg, and Olshevsky [Linear Algebra Appl., 405 (2005), pp. 1-40], we use the Sturm property with bisection to compute all or selected eigenvalues of A. Moreover, linear complexity algorithms are established for computing norms, in particular, the Frobenius norm parallel to A parallel to(F), and parallel to A parallel to(infinity), parallel to A parallel to(1), and other bounds for the initial interval to be bisected. Upper and lower bounds for eigenvalues are given by the Gershgorin Circle Theorem, and we describe an algorithm with linear complexity to compute them for quasiseparable matrices.
引用
收藏
页码:342 / 366
页数:25
相关论文
共 17 条
  • [1] THE BISECTION EIGENVALUE METHOD FOR UNITARY HESSENBERG MATRICES VIA THEIR QUASISEPARABLE STRUCTURE
    Eidelman, Yuli
    Haimovici, Iulian
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 59 : 60 - 88
  • [2] The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order
    Eidelman, Y
    Gohberg, I
    Olshevsky, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 404 (1-3) : 305 - 324
  • [3] Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations
    Yuli Eidelman
    Luca Gemignani
    Israel Gohberg
    [J]. Numerical Algorithms, 2008, 47 : 253 - 273
  • [4] Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations
    Eidelman, Yuli
    Gemignani, Luca
    Gohberg, Israel
    [J]. NUMERICAL ALGORITHMS, 2008, 47 (03) : 253 - 273
  • [5] FAST NON-HERMITIAN TOEPLITZ EIGENVALUE COMPUTATIONS, JOINING MATRIXLESS ALGORITHMS AND FDE APPROXIMATION MATRICES
    Bogoya, Manuel
    Grudsky, Sergei M.
    Serra-capizzano, Stefano
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2024, 45 (01) : 284 - 305
  • [6] IMPROVED BISECTION EIGENVALUE METHOD FOR BAND SYMMETRIC TOEPLITZ MATRICES*
    Eidelman, Yuli
    Haimovici, Iulian
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 58 : 316 - 347
  • [7] STABILITY OF QR-BASED FAST SYSTEM SOLVERS FOR A SUBCLASS OF QUASISEPARABLE RANK ONE MATRICES
    Dopico, Froilan M.
    Olshevsky, Vadim
    Zhlobich, Pavel
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2007 - 2034
  • [8] Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices
    Bini, D. A.
    Eidelman, Y.
    Gemignani, L.
    Gohberg, I.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 566 - 585
  • [9] A method for calculating the eigenvalues of large Hermitian matrices by second-order recursion formulae
    Mitsutake, A
    Iitaka, T
    Okamoto, Y
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1996, 96 (2-3) : 217 - 231
  • [10] AN EFFICIENT ITERATIVE METHOD FOR SOLVING QUADRATIC INVERSE EIGENVALUE PROBLEM OVER HERMITIAN CENTROSKEW MATRICES WITH A SUBMATRIX CONSTRAINT
    Huang, Baohua
    Ma, Changpeng
    Xie, Yajun
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (03): : 601 - 624