The maximum size of graphs with a unique k-factor

被引:0
|
作者
Volkmann, L [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For suitable positive integers n and k let m(n, k) denote the maximum number of edges in a graph of order n which has a unique k-factor. In 1964, Hetyei and in 1984, Hendry proved m(n,1) = n(2)/4 for even n and m(n,2) = [n(n+1)/4], respectively. Recently, Johann confirmed the following conjectures of Hendry: m(n,k) = nk/2 + ((n-k)(2)) for k > n/2 and kn even and m(n,k) = n2/4 + (k-1)n/4 for n = 2kq, where q is a positive integer. In this paper we prove m(n,k) = k(2) + ((n-k)(2)) for n/3 less than or equal to k < n/2 and kn even, and we determine m(n, 3).
引用
收藏
页码:531 / 540
页数:10
相关论文
共 50 条
  • [1] The maximum size of graphs with a unique k-factor
    Volkmann L.
    Combinatorica, 2004, 24 (3) : 531 - 540
  • [2] MAXIMUM GRAPHS WITH A UNIQUE K-FACTOR
    HENDRY, GRT
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (01) : 53 - 63
  • [3] On the structure of graphs with a unique k-factor
    Johann, P
    JOURNAL OF GRAPH THEORY, 2000, 35 (04) : 227 - 243
  • [4] Binding number, k-factor and spectral radius of graphs
    Fana, Dandan
    Lin, Huiqiu
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [5] On PTAS for the Geometric Maximum Connected k-Factor Problem
    Gimadi, Edward
    Rykov, Ivan
    Tsidulko, Oxana
    OPTIMIZATION AND APPLICATIONS, OPTIMA 2019, 2020, 1145 : 194 - 205
  • [6] On independent domination critical graphs and k-factor critical
    Ananchuen, N.
    Ruksasakchai, W.
    Ananchuen, W.
    ARS COMBINATORIA, 2016, 126 : 109 - 115
  • [7] K-FACTOR
    EERING, JT
    NON-DESTRUCTIVE TESTING, 1971, 4 (01): : 56 - &
  • [8] SOME DEGREE CONDITIONS FOR P≥k-FACTOR COVERED GRAPHS
    Dai, Guowei
    Zhang, Zan-Bo
    Hang, Yicheng
    Zhang, Xiaoyan
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (05) : 2907 - 2913
  • [9] K-FACTOR PARADOX
    CHEONGSIATMOY, F
    JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1986, 112 (08): : 1747 - 1760
  • [10] Maximum graphs with unique minimum dominating set of size two
    Fraboni, Michael
    Shank, Nathan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2010, 46 : 91 - 99